Spaces:
Running
on
Zero
Running
on
Zero
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gc
|
| 2 |
+
import os
|
| 3 |
+
import io
|
| 4 |
+
import time
|
| 5 |
+
import tempfile
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
import torch
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from transformers import Mistral3ForConditionalGeneration, AutoProcessor
|
| 11 |
+
|
| 12 |
+
from mistral_text_encoding_core import encode_prompt
|
| 13 |
+
|
| 14 |
+
# ------------------------------------------------------
|
| 15 |
+
# Logging
|
| 16 |
+
# ------------------------------------------------------
|
| 17 |
+
logging.basicConfig(
|
| 18 |
+
level=os.getenv("LOG_LEVEL", "INFO"),
|
| 19 |
+
format="%(asctime)s [%(levelname)s] %(name)s - %(message)s",
|
| 20 |
+
)
|
| 21 |
+
logger = logging.getLogger("mistral-text-encoding-gradio")
|
| 22 |
+
|
| 23 |
+
# ------------------------------------------------------
|
| 24 |
+
# Config
|
| 25 |
+
# ------------------------------------------------------
|
| 26 |
+
TEXT_ENCODER_ID = os.getenv("TEXT_ENCODER_ID", "/repository")
|
| 27 |
+
TOKENIZER_ID = os.getenv(
|
| 28 |
+
"TOKENIZER_ID", "mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
| 29 |
+
)
|
| 30 |
+
DTYPE = torch.bfloat16
|
| 31 |
+
|
| 32 |
+
# ------------------------------------------------------
|
| 33 |
+
# Global model references
|
| 34 |
+
# ------------------------------------------------------
|
| 35 |
+
logger.info("Loading models...")
|
| 36 |
+
|
| 37 |
+
t0 = time.time()
|
| 38 |
+
text_encoder = Mistral3ForConditionalGeneration.from_pretrained(
|
| 39 |
+
TEXT_ENCODER_ID,
|
| 40 |
+
dtype=DTYPE,
|
| 41 |
+
).to("cuda")
|
| 42 |
+
logger.info(
|
| 43 |
+
"Loaded Mistral text encoder (%.2fs) dtype=%s device=%s",
|
| 44 |
+
time.time() - t0,
|
| 45 |
+
text_encoder.dtype,
|
| 46 |
+
DEVICE_MAP,
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
t1 = time.time()
|
| 50 |
+
tokenizer = AutoProcessor.from_pretrained(TOKENIZER_ID)
|
| 51 |
+
logger.info("Loaded tokenizer in %.2fs", time.time() - t1)
|
| 52 |
+
|
| 53 |
+
torch.set_grad_enabled(False)
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def get_vram_info():
|
| 57 |
+
"""Get current VRAM usage info."""
|
| 58 |
+
if torch.cuda.is_available():
|
| 59 |
+
return {
|
| 60 |
+
"vram_allocated_mb": round(torch.cuda.memory_allocated() / 1024 / 1024, 2),
|
| 61 |
+
"vram_reserved_mb": round(torch.cuda.memory_reserved() / 1024 / 1024, 2),
|
| 62 |
+
"vram_max_allocated_mb": round(torch.cuda.max_memory_allocated() / 1024 / 1024, 2),
|
| 63 |
+
}
|
| 64 |
+
return {"vram": "CUDA not available"}
|
| 65 |
+
|
| 66 |
+
@spaces.GPU()
|
| 67 |
+
def encode_text(prompt: str):
|
| 68 |
+
"""Encode text and return a downloadable pytorch file."""
|
| 69 |
+
global text_encoder, tokenizer
|
| 70 |
+
|
| 71 |
+
if text_encoder is None or tokenizer is None:
|
| 72 |
+
return None, "Model not loaded"
|
| 73 |
+
|
| 74 |
+
t0 = time.time()
|
| 75 |
+
|
| 76 |
+
# Handle multiple prompts (one per line)
|
| 77 |
+
prompts = [p.strip() for p in prompt.strip().split("\n") if p.strip()]
|
| 78 |
+
if not prompts:
|
| 79 |
+
return None, "Please enter at least one prompt"
|
| 80 |
+
|
| 81 |
+
num_prompts = len(prompts)
|
| 82 |
+
prompt_input = prompts[0] if num_prompts == 1 else prompts
|
| 83 |
+
|
| 84 |
+
logger.info("Encoding %d prompt(s)", num_prompts)
|
| 85 |
+
|
| 86 |
+
prompt_embeds, text_ids = encode_prompt(
|
| 87 |
+
text_encoder=text_encoder,
|
| 88 |
+
tokenizer=tokenizer,
|
| 89 |
+
prompt=prompt_input,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
duration = (time.time() - t0) * 1000.0
|
| 93 |
+
|
| 94 |
+
logger.info(
|
| 95 |
+
"Encoded in %.2f ms | prompt_embeds.shape=%s | text_ids.shape=%s",
|
| 96 |
+
duration,
|
| 97 |
+
tuple(prompt_embeds.shape),
|
| 98 |
+
tuple(text_ids.shape),
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# Save tensor to a temporary file
|
| 102 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".pt")
|
| 103 |
+
torch.save(prompt_embeds.cpu(), temp_file.name)
|
| 104 |
+
|
| 105 |
+
# Clean up GPU tensors
|
| 106 |
+
del prompt_embeds, text_ids
|
| 107 |
+
gc.collect()
|
| 108 |
+
if torch.cuda.is_available():
|
| 109 |
+
torch.cuda.empty_cache()
|
| 110 |
+
|
| 111 |
+
vram = get_vram_info()
|
| 112 |
+
status = (
|
| 113 |
+
f"Encoded {num_prompts} prompt(s) in {duration:.2f}ms\n"
|
| 114 |
+
f"VRAM: {vram.get('vram_allocated_mb', 'N/A')} MB allocated, "
|
| 115 |
+
f"{vram.get('vram_max_allocated_mb', 'N/A')} MB peak"
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
return temp_file.name, status
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# ------------------------------------------------------
|
| 122 |
+
# Gradio Interface
|
| 123 |
+
# ------------------------------------------------------
|
| 124 |
+
with gr.Blocks(title="Mistral Text Encoder") as demo:
|
| 125 |
+
gr.Markdown("# Mistral Text Encoder")
|
| 126 |
+
gr.Markdown("Enter text to encode. For multiple prompts, put each on a new line.")
|
| 127 |
+
|
| 128 |
+
with gr.Row():
|
| 129 |
+
with gr.Column():
|
| 130 |
+
prompt_input = gr.Textbox(
|
| 131 |
+
label="Prompt(s)",
|
| 132 |
+
placeholder="Enter your prompt here...\nOr multiple prompts, one per line",
|
| 133 |
+
lines=5,
|
| 134 |
+
)
|
| 135 |
+
encode_btn = gr.Button("Encode", variant="primary")
|
| 136 |
+
|
| 137 |
+
with gr.Column():
|
| 138 |
+
output_file = gr.File(label="Download Embeddings (.pt)")
|
| 139 |
+
status_output = gr.Textbox(label="Status", interactive=False)
|
| 140 |
+
|
| 141 |
+
encode_btn.click(
|
| 142 |
+
fn=encode_text,
|
| 143 |
+
inputs=[prompt_input],
|
| 144 |
+
outputs=[output_file, status_output],
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
if __name__ == "__main__":
|
| 149 |
+
load_models()
|
| 150 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|