Spaces:
Sleeping
Sleeping
Commit
Β·
26e5195
1
Parent(s):
e20d2a1
version 3
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipe
|
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
|
| 6 |
-
# Load model and tokenizer with adapter
|
| 7 |
@st.cache_resource
|
| 8 |
def load_model():
|
| 9 |
base_model = "Qwen/Qwen3-0.6B"
|
|
@@ -20,11 +19,9 @@ def load_model():
|
|
| 20 |
model = PeftModel.from_pretrained(base, adapter_path)
|
| 21 |
model = model.merge_and_unload()
|
| 22 |
|
| 23 |
-
# β
Text classification pipeline
|
| 24 |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 25 |
return pipe
|
| 26 |
|
| 27 |
-
# Load pipeline once
|
| 28 |
classifier = load_model()
|
| 29 |
|
| 30 |
# Streamlit UI
|
|
@@ -33,19 +30,21 @@ text = st.text_area("Enter a news statement or claim:", height=200)
|
|
| 33 |
|
| 34 |
if st.button("Check"):
|
| 35 |
with st.spinner("Analyzing..."):
|
| 36 |
-
# Get classification result
|
| 37 |
result = classifier(text)[0]
|
| 38 |
label = result['label']
|
| 39 |
score = result['score']
|
| 40 |
|
| 41 |
-
|
| 42 |
-
|
|
|
|
| 43 |
verdict = "Real"
|
| 44 |
emoji = "β
"
|
| 45 |
-
|
| 46 |
verdict = "Fake"
|
| 47 |
emoji = "β"
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
# Show result
|
| 50 |
st.subheader("Prediction")
|
| 51 |
st.success(f"{emoji} The statement is likely: **{verdict}** (confidence: {score:.2f})")
|
|
|
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
|
|
|
|
| 6 |
@st.cache_resource
|
| 7 |
def load_model():
|
| 8 |
base_model = "Qwen/Qwen3-0.6B"
|
|
|
|
| 19 |
model = PeftModel.from_pretrained(base, adapter_path)
|
| 20 |
model = model.merge_and_unload()
|
| 21 |
|
|
|
|
| 22 |
pipe = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 23 |
return pipe
|
| 24 |
|
|
|
|
| 25 |
classifier = load_model()
|
| 26 |
|
| 27 |
# Streamlit UI
|
|
|
|
| 30 |
|
| 31 |
if st.button("Check"):
|
| 32 |
with st.spinner("Analyzing..."):
|
|
|
|
| 33 |
result = classifier(text)[0]
|
| 34 |
label = result['label']
|
| 35 |
score = result['score']
|
| 36 |
|
| 37 |
+
st.write("π Raw label:", label) # Debug print
|
| 38 |
+
|
| 39 |
+
if label == "LABEL_1":
|
| 40 |
verdict = "Real"
|
| 41 |
emoji = "β
"
|
| 42 |
+
elif label == "LABEL_0":
|
| 43 |
verdict = "Fake"
|
| 44 |
emoji = "β"
|
| 45 |
+
else:
|
| 46 |
+
verdict = f"Unclear ({label})"
|
| 47 |
+
emoji = "π€"
|
| 48 |
|
|
|
|
| 49 |
st.subheader("Prediction")
|
| 50 |
st.success(f"{emoji} The statement is likely: **{verdict}** (confidence: {score:.2f})")
|