Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline | |
| from peft import PeftModel | |
| import torch | |
| def load_model(): | |
| base_model = "deepseek-ai/deepseek-coder-5.7b-base" | |
| adapter_path = "faizabenatmane/deepseek-coder-5.7bmqa-finetuned" | |
| tokenizer = AutoTokenizer.from_pretrained(base_model) | |
| base = AutoModelForCausalLM.from_pretrained(base_model, torch_dtype=torch.float16, device_map="auto") | |
| model = PeftModel.from_pretrained(base, adapter_path) | |
| model = model.merge_and_unload() | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
| return pipe | |
| generator = load_model() | |
| st.title("🧠 DeepSeek QA (Generation)") | |
| text = st.text_area("Ask a coding or general question:", height=200) | |
| if st.button("Generate Answer"): | |
| with st.spinner("Generating..."): | |
| prompt = f"Question: {text}\nAnswer:" | |
| output = generator(prompt, max_new_tokens=100, do_sample=False)[0]["generated_text"] | |
| answer = output.split("Answer:")[-1].strip() | |
| st.subheader("Generated Answer") | |
| st.success(answer) | |