File size: 5,175 Bytes
133d5e0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
import faiss
import numpy as np
import json
from transformers import AutoProcessor, AutoModel
from PIL import Image
import torch
import argparse
import requests,os
from dotenv import load_dotenv
import tempfile

# ------------------------------
# 1️⃣ Setup Model and Device
# ------------------------------
print("[INFO] Loading model...")
processor = AutoProcessor.from_pretrained("google/siglip-base-patch16-224")
model = AutoModel.from_pretrained("google/siglip-base-patch16-224")
model.eval()

device = "cuda" if torch.cuda.is_available() else "cpu"
model.to(device)
print(f"[INFO] Using device: {device}")

# ------------------------------
# 2️⃣ Load Manifest
# ------------------------------
load_dotenv()  # Load .env file

env_blob = os.environ.get("find_it_or_create", "")
secrets = {}

for line in env_blob.splitlines():
    if "=" in line:
        k, v = line.split("=", 1)
        secrets[k.strip()] = v.strip().strip('"')

json_url = secrets.get("JSON_URL")
faiss_image_url=secrets.get("faiss_image")
faiss_text_url=secrets.get("faiss_text")

print("✅ Extracted JSON_URL:")

response = requests.get(json_url)
response.raise_for_status()
manifest_data = response.json()

def download_faiss_index(url):
    response = requests.get(url)
    response.raise_for_status()
    tmp_path = tempfile.mktemp(suffix=".faiss")
    with open(tmp_path, "wb") as f:
        f.write(response.content)
    return tmp_path

faiss_image = download_faiss_index(faiss_image_url)
faiss_text = download_faiss_index(faiss_text_url)

print("✅ Extracted index:")

print("[DEBUG] manifest_data type:", type(manifest_data))

manifest = manifest_data
if "products" in manifest:
    manifest = manifest["products"]

# Build mappings from FAISS position → product_id safely
image_pos_to_id = {}
text_pos_to_id = {}
for pid, v in manifest.items():
    if "image_pos" in v:
        image_pos_to_id[v["image_pos"]] = pid
    if "text_pos" in v:
        text_pos_to_id[v["text_pos"]] = pid

# ------------------------------
# 3️⃣ Load FAISS Indexes
# ------------------------------
print("[INFO] Loading FAISS indexes...")
image_index = faiss.read_index(faiss_image)
text_index = faiss.read_index(faiss_text)

# ------------------------------
# 4️⃣ Search Functions
# ------------------------------

def search_image(image_path, topk=5):
    """Search similar images and return full manifest data"""
    print(f"[DEBUG] Running image search on: {image_path}")
    img = Image.open(image_path).convert("RGB")
    inputs = processor(images=img, return_tensors="pt").to(device)

    with torch.no_grad():
        image_embedding = model.get_image_features(**inputs)

    vec = image_embedding.cpu().numpy()
    vec /= np.linalg.norm(vec)

    scores, positions = image_index.search(vec, topk)
    # print(f"[DEBUG] FAISS returned positions: {positions[0]}, scores: {scores[0]}")

    results = []
    for pos, score in zip(positions[0], scores[0]):
        pid = image_pos_to_id.get(int(pos))
        if pid:
            results.append({
                "score": float(score),
                "data": manifest[pid]
            })
    for r in results:
            print(json.dumps(r["data"], indent=2, ensure_ascii=False))
    # print(f"[INFO] Found {len(results)} results")
    return results


def search_text(query, topk=5):
    """Search similar texts and return full manifest data"""
    print(f"[DEBUG] Running text search for query: '{query}'")
    inputs = processor(text=query, return_tensors="pt").to(device)

    with torch.no_grad():
        text_embedding = model.get_text_features(**inputs)

    vec = text_embedding.cpu().numpy()
    vec /= np.linalg.norm(vec)

    scores, positions = text_index.search(vec, topk)
    # print(f"[DEBUG] FAISS returned positions: {positions[0]}, scores: {scores[0]}")

    results = []
    for pos, score in zip(positions[0], scores[0]):
        pid = text_pos_to_id.get(int(pos))
        if pid:
            results.append({
                "score": float(score),
                "data": manifest[pid]
            })

    # print(f"[INFO] Found {len(results)} results")
    return results

# ------------------------------
# 5️⃣ Command-Line Interface
# ------------------------------
if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="SigLIP Image/Text Search")
    parser.add_argument("--image", type=str, help="Path to query image")
    parser.add_argument("--text", type=str, help="Query text")
    parser.add_argument("--topk", type=int, default=5, help="Number of results")
    args = parser.parse_args()

    if args.image:
        results = search_image(args.image, topk=args.topk)
        print(f"\n🔎 Image Search Results ({len(results)}):")
        # for r in results:
        #     print(json.dumps(r["data"], indent=2, ensure_ascii=False))

    if args.text:
        results = search_text(args.text, topk=args.topk)
        # print(f"\n🔎 Text Search Results ({len(results)}):")
        # for r in results:
        #     print(json.dumps(r["data"], indent=2, ensure_ascii=False))

    if not args.image and not args.text:
        print("Please provide --image or --text for search.")