Spaces:
Paused
Paused
update app.py
Browse files
app.py
CHANGED
|
@@ -4,37 +4,8 @@ import numpy as np
|
|
| 4 |
|
| 5 |
st.title('Uber pickups in NYC')
|
| 6 |
|
| 7 |
-
DATE_COLUMN = 'date/time'
|
| 8 |
-
DATA_URL = ('https://s3-us-west-2.amazonaws.com/'
|
| 9 |
-
'streamlit-demo-data/uber-raw-data-sep14.csv.gz')
|
| 10 |
-
|
| 11 |
-
@st.cache_data
|
| 12 |
-
def load_data(nrows):
|
| 13 |
-
data = pd.read_csv(DATA_URL, nrows=nrows)
|
| 14 |
-
lowercase = lambda x: str(x).lower()
|
| 15 |
-
data.rename(lowercase, axis='columns', inplace=True)
|
| 16 |
-
data[DATE_COLUMN] = pd.to_datetime(data[DATE_COLUMN])
|
| 17 |
-
return data
|
| 18 |
-
|
| 19 |
-
data_load_state = st.text('Loading data...')
|
| 20 |
-
data = load_data(10000)
|
| 21 |
-
data_load_state.text("Done! (using st.cache)")
|
| 22 |
-
|
| 23 |
-
if st.checkbox('Show raw data'):
|
| 24 |
-
st.subheader('Raw data')
|
| 25 |
-
st.write(data)
|
| 26 |
|
| 27 |
st.subheader('Number of pickups by hour')
|
| 28 |
-
hist_values = np.histogram(data[DATE_COLUMN].dt.hour, bins=24, range=(0,24))[0]
|
| 29 |
-
st.bar_chart(hist_values)
|
| 30 |
-
|
| 31 |
-
# Some number in the range 0-23
|
| 32 |
-
hour_to_filter = st.slider('hour', 0, 23, 17)
|
| 33 |
-
filtered_data = data[data[DATE_COLUMN].dt.hour == hour_to_filter]
|
| 34 |
-
|
| 35 |
-
st.subheader('Map of all pickups at %s:00' % hour_to_filter)
|
| 36 |
-
st.map(filtered_data)
|
| 37 |
-
|
| 38 |
uploaded_file = st.file_uploader("Choose a file")
|
| 39 |
if uploaded_file is not None:
|
| 40 |
st.write(uploaded_file.name)
|
|
|
|
| 4 |
|
| 5 |
st.title('Uber pickups in NYC')
|
| 6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
st.subheader('Number of pickups by hour')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
uploaded_file = st.file_uploader("Choose a file")
|
| 10 |
if uploaded_file is not None:
|
| 11 |
st.write(uploaded_file.name)
|