Spaces:
Runtime error
Runtime error
| import os | |
| import sys | |
| import math | |
| import numpy as np | |
| import torch | |
| import torchvision.transforms as T | |
| from torchvision.transforms.functional import InterpolationMode | |
| from PIL import Image | |
| import gradio as gr | |
| from transformers import AutoModel, AutoTokenizer | |
| # Enhanced debug printing | |
| import logging | |
| import traceback | |
| # Configure logging | |
| logging.basicConfig( | |
| level=logging.INFO, | |
| format='%(asctime)s - %(name)s - %(levelname)s - %(message)s', | |
| handlers=[logging.StreamHandler()] | |
| ) | |
| logger = logging.getLogger("InternVL2.5-Debug") | |
| # Print environment info | |
| logger.info("Python version: %s", sys.version) | |
| logger.info("PyTorch version: %s", torch.__version__) | |
| logger.info("Transformers version: %s", __import__("transformers").__version__) | |
| try: | |
| logger.info("Einops version: %s", __import__("einops").__version__) | |
| except ImportError: | |
| logger.error("Einops is not installed!") | |
| # Constants | |
| IMAGENET_MEAN = (0.485, 0.456, 0.406) | |
| IMAGENET_STD = (0.229, 0.224, 0.225) | |
| # Configuration | |
| MODEL_NAME = "OpenGVLab/InternVL2_5-8B" # Smaller model for faster loading | |
| IMAGE_SIZE = 448 | |
| # Set up environment variables | |
| os.environ["PYTORCH_CUDA_ALLOC_CONF"] = "max_split_size_mb:128" | |
| # Utility functions for image processing | |
| def build_transform(input_size): | |
| MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | |
| transform = T.Compose([ | |
| T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | |
| T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | |
| T.ToTensor(), | |
| T.Normalize(mean=MEAN, std=STD) | |
| ]) | |
| return transform | |
| def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | |
| best_ratio_diff = float('inf') | |
| best_ratio = (1, 1) | |
| area = width * height | |
| for ratio in target_ratios: | |
| target_aspect_ratio = ratio[0] / ratio[1] | |
| ratio_diff = abs(aspect_ratio - target_aspect_ratio) | |
| if ratio_diff < best_ratio_diff: | |
| best_ratio_diff = ratio_diff | |
| best_ratio = ratio | |
| elif ratio_diff == best_ratio_diff: | |
| if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | |
| best_ratio = ratio | |
| return best_ratio | |
| def dynamic_preprocess(image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): | |
| orig_width, orig_height = image.size | |
| aspect_ratio = orig_width / orig_height | |
| # calculate the existing image aspect ratio | |
| target_ratios = set( | |
| (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | |
| i * j <= max_num and i * j >= min_num) | |
| target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | |
| # find the closest aspect ratio to the target | |
| target_aspect_ratio = find_closest_aspect_ratio( | |
| aspect_ratio, target_ratios, orig_width, orig_height, image_size) | |
| # calculate the target width and height | |
| target_width = image_size * target_aspect_ratio[0] | |
| target_height = image_size * target_aspect_ratio[1] | |
| blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | |
| # resize the image | |
| resized_img = image.resize((target_width, target_height)) | |
| processed_images = [] | |
| for i in range(blocks): | |
| box = ( | |
| (i % (target_width // image_size)) * image_size, | |
| (i // (target_width // image_size)) * image_size, | |
| ((i % (target_width // image_size)) + 1) * image_size, | |
| ((i // (target_width // image_size)) + 1) * image_size | |
| ) | |
| # split the image | |
| split_img = resized_img.crop(box) | |
| processed_images.append(split_img) | |
| assert len(processed_images) == blocks | |
| if use_thumbnail and len(processed_images) != 1: | |
| thumbnail_img = image.resize((image_size, image_size)) | |
| processed_images.append(thumbnail_img) | |
| return processed_images | |
| # Load and preprocess image for the model - following the official documentation pattern | |
| def load_image(image_pil, max_num=12): | |
| # Process the image using dynamic_preprocess | |
| processed_images = dynamic_preprocess(image_pil, image_size=IMAGE_SIZE, max_num=max_num) | |
| # Convert PIL images to tensor format expected by the model | |
| transform = build_transform(IMAGE_SIZE) | |
| pixel_values = [transform(img) for img in processed_images] | |
| pixel_values = torch.stack(pixel_values) | |
| # Convert to appropriate data type | |
| if torch.cuda.is_available(): | |
| pixel_values = pixel_values.cuda().to(torch.bfloat16) | |
| else: | |
| pixel_values = pixel_values.to(torch.float32) | |
| return pixel_values | |
| # Function to split model across GPUs | |
| def split_model(model_name): | |
| device_map = {} | |
| world_size = torch.cuda.device_count() | |
| if world_size <= 1: | |
| return "auto" | |
| num_layers = { | |
| 'InternVL2_5-1B': 24, | |
| 'InternVL2_5-2B': 24, | |
| 'InternVL2_5-4B': 36, | |
| 'InternVL2_5-8B': 32, | |
| 'InternVL2_5-26B': 48, | |
| 'InternVL2_5-38B': 64, | |
| 'InternVL2_5-78B': 80 | |
| }[model_name] | |
| # Since the first GPU will be used for ViT, treat it as half a GPU. | |
| num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5)) | |
| num_layers_per_gpu = [num_layers_per_gpu] * world_size | |
| num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5) | |
| layer_cnt = 0 | |
| for i, num_layer in enumerate(num_layers_per_gpu): | |
| for j in range(num_layer): | |
| device_map[f'language_model.model.layers.{layer_cnt}'] = i | |
| layer_cnt += 1 | |
| device_map['vision_model'] = 0 | |
| device_map['mlp1'] = 0 | |
| device_map['language_model.model.tok_embeddings'] = 0 | |
| device_map['language_model.model.embed_tokens'] = 0 | |
| device_map['language_model.model.rotary_emb'] = 0 | |
| device_map['language_model.output'] = 0 | |
| device_map['language_model.model.norm'] = 0 | |
| device_map['language_model.lm_head'] = 0 | |
| device_map[f'language_model.model.layers.{num_layers - 1}'] = 0 | |
| return device_map | |
| # Get model dtype | |
| def get_model_dtype(): | |
| return torch.bfloat16 if torch.cuda.is_available() else torch.float32 | |
| # Model loading function | |
| def load_model(): | |
| print(f"\n=== Loading {MODEL_NAME} ===") | |
| print(f"CUDA available: {torch.cuda.is_available()}") | |
| model_dtype = get_model_dtype() | |
| print(f"Using model dtype: {model_dtype}") | |
| if torch.cuda.is_available(): | |
| print(f"GPU count: {torch.cuda.device_count()}") | |
| for i in range(torch.cuda.device_count()): | |
| print(f"GPU {i}: {torch.cuda.get_device_name(i)}") | |
| # Memory info | |
| print(f"Total GPU memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB") | |
| print(f"Allocated GPU memory: {torch.cuda.memory_allocated() / 1e9:.2f} GB") | |
| print(f"Reserved GPU memory: {torch.cuda.memory_reserved() / 1e9:.2f} GB") | |
| # Determine device map | |
| device_map = "auto" | |
| if torch.cuda.is_available() and torch.cuda.device_count() > 1: | |
| model_short_name = MODEL_NAME.split('/')[-1] | |
| device_map = split_model(model_short_name) | |
| # Load model and tokenizer | |
| try: | |
| model = AutoModel.from_pretrained( | |
| MODEL_NAME, | |
| torch_dtype=model_dtype, | |
| low_cpu_mem_usage=True, | |
| trust_remote_code=True, | |
| device_map=device_map | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| use_fast=False, | |
| trust_remote_code=True | |
| ) | |
| print(f"✓ Model and tokenizer loaded successfully!") | |
| return model, tokenizer | |
| except Exception as e: | |
| logger.error(f"❌ Error loading model: {e}") | |
| logger.error("Detailed traceback:") | |
| import traceback | |
| traceback.print_exc() | |
| # Check if einops is available | |
| try: | |
| import einops | |
| logger.info(f"einops is available, version: {einops.__version__}") | |
| except ImportError: | |
| logger.error("ImportError: einops is not installed! This is required for InternVL2.5.") | |
| # Check for CUDA availability | |
| if torch.cuda.is_available(): | |
| logger.info(f"CUDA is available. Device count: {torch.cuda.device_count()}") | |
| for i in range(torch.cuda.device_count()): | |
| logger.info(f"Device {i}: {torch.cuda.get_device_name(i)}") | |
| logger.info(f"Memory allocated: {torch.cuda.memory_allocated(i) / 1e9:.2f} GB") | |
| logger.info(f"Memory reserved: {torch.cuda.memory_reserved(i) / 1e9:.2f} GB") | |
| else: | |
| logger.warning("CUDA is not available. Running on CPU.") return None, None | |
| # Image analysis function using the chat method from documentation | |
| def analyze_image(model, tokenizer, image, prompt): | |
| try: | |
| # Check if image is valid | |
| if image is None: | |
| return "Please upload an image first." | |
| # Process the image following official pattern | |
| pixel_values = load_image(image) | |
| # Debug info | |
| print(f"Image processed: tensor shape {pixel_values.shape}, dtype {pixel_values.dtype}") | |
| # Define generation config | |
| generation_config = { | |
| "max_new_tokens": 512, | |
| "do_sample": False | |
| } | |
| # Use the model.chat method as shown in the official documentation | |
| question = f"<image>\n{prompt}" | |
| response, _ = model.chat( | |
| tokenizer=tokenizer, | |
| pixel_values=pixel_values, | |
| question=question, | |
| generation_config=generation_config, | |
| history=None, | |
| return_history=True | |
| ) | |
| return response | |
| except Exception as e: | |
| import traceback | |
| error_msg = f"Error analyzing image: {str(e)}\n{traceback.format_exc()}" | |
| return error_msg | |
| # Main function | |
| def main(): | |
| # Add debug info at the start of main | |
| logger.info("Starting main() function...") | |
| logger.info(f"MODEL_NAME: {MODEL_NAME}") | |
| # Load the model | |
| model, tokenizer = load_model() | |
| if model is None: | |
| # Create an error interface if model loading failed | |
| demo = gr.Interface( | |
| fn=lambda x: "Model loading failed. Please check the logs for details.", | |
| inputs=gr.Textbox(), | |
| outputs=gr.Textbox(), | |
| title="InternVL2.5 Image Analyzer - Error", | |
| description="The model failed to load. Please check the logs for more information." | |
| ) | |
| return demo | |
| # Predefined prompts for analysis | |
| prompts = [ | |
| "Describe this image in detail.", | |
| "What can you tell me about this image?", | |
| "Is there any text in this image? If so, can you read it?", | |
| "What is the main subject of this image?", | |
| "What emotions or feelings does this image convey?", | |
| "Describe the composition and visual elements of this image.", | |
| "Summarize what you see in this image in one paragraph." | |
| ] | |
| # Create the interface | |
| demo = gr.Interface( | |
| fn=lambda img, prompt: analyze_image(model, tokenizer, img, prompt), | |
| inputs=[ | |
| gr.Image(type="pil", label="Upload Image"), | |
| gr.Dropdown(choices=prompts, value=prompts[0], label="Select a prompt or write your own below", | |
| allow_custom_value=True) | |
| ], | |
| outputs=gr.Textbox(label="Analysis Results", lines=15), | |
| title="InternVL2.5 Image Analyzer", | |
| description="Upload an image and ask the InternVL2.5 model to analyze it.", | |
| examples=[ | |
| ["example_images/example1.jpg", "Describe this image in detail."], | |
| ["example_images/example2.jpg", "What can you tell me about this image?"] | |
| ], | |
| theme=gr.themes.Soft(), | |
| allow_flagging="never" | |
| ) | |
| return demo | |
| # Run the application | |
| if __name__ == "__main__": | |
| try: | |
| # Check for GPU | |
| if not torch.cuda.is_available(): | |
| print("WARNING: CUDA is not available. The model requires a GPU to function properly.") | |
| # Create and launch the interface | |
| demo = main() | |
| demo.launch(server_name="0.0.0.0") | |
| except Exception as e: | |
| print(f"Error starting the application: {e}") | |
| import traceback | |
| traceback.print_exc() | |