Upload InternVL2 implementation
Browse files- app_internvl2.py +58 -68
app_internvl2.py
CHANGED
|
@@ -133,46 +133,48 @@ def load_model():
|
|
| 133 |
print("Cannot load models without GPU acceleration.")
|
| 134 |
return False
|
| 135 |
|
| 136 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
if HAS_LMDEPLOY:
|
| 138 |
try:
|
| 139 |
print("Attempting to load InternVL2 model...")
|
| 140 |
-
# Configure for AWQ quantized model
|
| 141 |
backend_config = TurbomindEngineConfig(
|
| 142 |
model_format='awq',
|
| 143 |
-
session_len=
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
-
# Set to non-streaming mode
|
| 147 |
internvl2_model = pipeline(
|
| 148 |
"OpenGVLab/InternVL2-40B-AWQ",
|
| 149 |
backend_config=backend_config,
|
| 150 |
model_name_or_path=None,
|
| 151 |
backend_name="turbomind",
|
| 152 |
stream=False, # Disable streaming
|
|
|
|
| 153 |
)
|
| 154 |
|
| 155 |
print("InternVL2 model loaded successfully!")
|
| 156 |
-
return True
|
| 157 |
except Exception as e:
|
| 158 |
print(f"Failed to load InternVL2: {str(e)}")
|
| 159 |
internvl2_model = None
|
| 160 |
|
| 161 |
-
#
|
| 162 |
-
|
| 163 |
-
try:
|
| 164 |
-
print("Falling back to BLIP model...")
|
| 165 |
-
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 166 |
-
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
| 167 |
-
print("BLIP model loaded successfully!")
|
| 168 |
-
return True
|
| 169 |
-
except Exception as e:
|
| 170 |
-
print(f"Failed to load BLIP: {str(e)}")
|
| 171 |
-
blip_processor = None
|
| 172 |
-
blip_model = None
|
| 173 |
-
|
| 174 |
-
print("Could not load any model")
|
| 175 |
-
return False
|
| 176 |
|
| 177 |
# Try to load a model at startup
|
| 178 |
MODEL_LOADED = load_model()
|
|
@@ -192,15 +194,44 @@ def analyze_image(image, prompt):
|
|
| 192 |
pil_image = Image.fromarray(image).convert('RGB')
|
| 193 |
else:
|
| 194 |
pil_image = image.convert('RGB')
|
| 195 |
-
|
| 196 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
if internvl2_model is not None:
|
| 198 |
try:
|
| 199 |
print("Running inference with InternVL2...")
|
| 200 |
print(f"Using prompt: '{prompt}'")
|
| 201 |
|
| 202 |
-
#
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
# Print debug info about the response
|
| 206 |
print(f"Response type: {type(response)}")
|
|
@@ -224,54 +255,13 @@ def analyze_image(image, prompt):
|
|
| 224 |
# Check if we got an empty result
|
| 225 |
if not result or result.strip() == "":
|
| 226 |
print("WARNING: Received empty response from InternVL2")
|
| 227 |
-
|
| 228 |
-
print("Trying alternative prompt...")
|
| 229 |
-
alt_prompt = "This is an image. Describe what you see in detail."
|
| 230 |
-
response2 = internvl2_model((alt_prompt, pil_image))
|
| 231 |
-
|
| 232 |
-
if hasattr(response2, "text"):
|
| 233 |
-
result = response2.text
|
| 234 |
-
elif hasattr(response2, "response"):
|
| 235 |
-
result = response2.response
|
| 236 |
-
elif hasattr(response2, "generated_text"):
|
| 237 |
-
result = response2.generated_text
|
| 238 |
-
else:
|
| 239 |
-
result = str(response2)
|
| 240 |
-
|
| 241 |
-
if not result or result.strip() == "":
|
| 242 |
-
print("Alternative prompt also gave empty result")
|
| 243 |
-
# Fall through to BLIP fallback
|
| 244 |
-
raise ValueError("Empty response from InternVL2")
|
| 245 |
-
else:
|
| 246 |
-
print(f"Alternative prompt worked: '{result}'")
|
| 247 |
|
| 248 |
-
|
| 249 |
-
if result and result.strip() != "":
|
| 250 |
-
return f"[InternVL2] {result}"
|
| 251 |
-
else:
|
| 252 |
-
# Try BLIP instead
|
| 253 |
-
raise ValueError("Empty response from InternVL2")
|
| 254 |
|
| 255 |
except Exception as e:
|
| 256 |
print(f"Error with InternVL2: {str(e)}")
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
# If we have BLIP loaded, use it
|
| 260 |
-
if blip_model is not None and blip_processor is not None:
|
| 261 |
-
try:
|
| 262 |
-
print("Running inference with BLIP...")
|
| 263 |
-
# BLIP doesn't use prompts the same way, simplify
|
| 264 |
-
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
|
| 265 |
-
out = blip_model.generate(**inputs, max_new_tokens=100)
|
| 266 |
-
result = blip_processor.decode(out[0], skip_special_tokens=True)
|
| 267 |
-
|
| 268 |
-
# Check if BLIP result is empty
|
| 269 |
-
if not result or result.strip() == "":
|
| 270 |
-
return "BLIP model returned an empty response. The model may be having issues processing this image."
|
| 271 |
-
|
| 272 |
-
return f"[BLIP] {result} (Note: Custom prompts not supported with BLIP fallback model)"
|
| 273 |
-
except Exception as e:
|
| 274 |
-
print(f"Error with BLIP: {str(e)}")
|
| 275 |
|
| 276 |
return "No model was able to analyze the image. See logs for details."
|
| 277 |
|
|
|
|
| 133 |
print("Cannot load models without GPU acceleration.")
|
| 134 |
return False
|
| 135 |
|
| 136 |
+
# Try to load BLIP first since it's more reliable
|
| 137 |
+
if HAS_BLIP:
|
| 138 |
+
try:
|
| 139 |
+
print("Loading BLIP model...")
|
| 140 |
+
blip_processor = BlipProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
|
| 141 |
+
blip_model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base").to("cuda")
|
| 142 |
+
print("BLIP model loaded successfully!")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f"Failed to load BLIP: {str(e)}")
|
| 145 |
+
blip_processor = None
|
| 146 |
+
blip_model = None
|
| 147 |
+
|
| 148 |
+
# Then try InternVL2 if lmdeploy is available
|
| 149 |
if HAS_LMDEPLOY:
|
| 150 |
try:
|
| 151 |
print("Attempting to load InternVL2 model...")
|
| 152 |
+
# Configure for AWQ quantized model with larger context
|
| 153 |
backend_config = TurbomindEngineConfig(
|
| 154 |
model_format='awq',
|
| 155 |
+
session_len=4096, # Increased session length
|
| 156 |
+
max_batch_size=1, # Limit batch size to reduce memory usage
|
| 157 |
+
cache_max_entry_count=0.3, # Adjust cache to optimize for single requests
|
| 158 |
+
tp=1 # Set tensor parallelism to 1 (use single GPU)
|
| 159 |
)
|
| 160 |
|
| 161 |
+
# Set to non-streaming mode with explicit token limits
|
| 162 |
internvl2_model = pipeline(
|
| 163 |
"OpenGVLab/InternVL2-40B-AWQ",
|
| 164 |
backend_config=backend_config,
|
| 165 |
model_name_or_path=None,
|
| 166 |
backend_name="turbomind",
|
| 167 |
stream=False, # Disable streaming
|
| 168 |
+
max_new_tokens=512, # Explicitly set max new tokens
|
| 169 |
)
|
| 170 |
|
| 171 |
print("InternVL2 model loaded successfully!")
|
|
|
|
| 172 |
except Exception as e:
|
| 173 |
print(f"Failed to load InternVL2: {str(e)}")
|
| 174 |
internvl2_model = None
|
| 175 |
|
| 176 |
+
# Return True if at least one model is loaded
|
| 177 |
+
return (blip_model is not None and blip_processor is not None) or (internvl2_model is not None)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
|
| 179 |
# Try to load a model at startup
|
| 180 |
MODEL_LOADED = load_model()
|
|
|
|
| 194 |
pil_image = Image.fromarray(image).convert('RGB')
|
| 195 |
else:
|
| 196 |
pil_image = image.convert('RGB')
|
| 197 |
+
|
| 198 |
+
# Try BLIP first since it's more reliable
|
| 199 |
+
if blip_model is not None and blip_processor is not None:
|
| 200 |
+
try:
|
| 201 |
+
print("Running inference with BLIP...")
|
| 202 |
+
# BLIP doesn't use prompts the same way, simplify
|
| 203 |
+
inputs = blip_processor(pil_image, return_tensors="pt").to("cuda")
|
| 204 |
+
out = blip_model.generate(**inputs, max_length=80, min_length=10, num_beams=5)
|
| 205 |
+
result = blip_processor.decode(out[0], skip_special_tokens=True)
|
| 206 |
+
|
| 207 |
+
# Check if BLIP result is empty
|
| 208 |
+
if not result or result.strip() == "":
|
| 209 |
+
print("BLIP model returned an empty response")
|
| 210 |
+
# Only fall through to InternVL2 if BLIP fails
|
| 211 |
+
raise ValueError("Empty response from BLIP")
|
| 212 |
+
|
| 213 |
+
return f"[BLIP] {result}"
|
| 214 |
+
except Exception as e:
|
| 215 |
+
print(f"Error with BLIP: {str(e)}")
|
| 216 |
+
# If BLIP fails, try InternVL2 if available
|
| 217 |
+
|
| 218 |
+
# Try InternVL2 if available
|
| 219 |
if internvl2_model is not None:
|
| 220 |
try:
|
| 221 |
print("Running inference with InternVL2...")
|
| 222 |
print(f"Using prompt: '{prompt}'")
|
| 223 |
|
| 224 |
+
# Create a specifically formatted prompt for InternVL2
|
| 225 |
+
formatted_prompt = f"<image>\n{prompt}"
|
| 226 |
+
print(f"Formatted prompt: '{formatted_prompt}'")
|
| 227 |
+
|
| 228 |
+
# Run the model with more explicit parameters
|
| 229 |
+
response = internvl2_model(
|
| 230 |
+
(formatted_prompt, pil_image),
|
| 231 |
+
max_new_tokens=512, # Set higher token limit
|
| 232 |
+
temperature=0.7, # Add temperature for better generation
|
| 233 |
+
top_p=0.9 # Add top_p for better generation
|
| 234 |
+
)
|
| 235 |
|
| 236 |
# Print debug info about the response
|
| 237 |
print(f"Response type: {type(response)}")
|
|
|
|
| 255 |
# Check if we got an empty result
|
| 256 |
if not result or result.strip() == "":
|
| 257 |
print("WARNING: Received empty response from InternVL2")
|
| 258 |
+
return "InternVL2 failed to analyze the image (empty response). This may be due to token limits."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 259 |
|
| 260 |
+
return f"[InternVL2] {result}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 261 |
|
| 262 |
except Exception as e:
|
| 263 |
print(f"Error with InternVL2: {str(e)}")
|
| 264 |
+
return f"Error with InternVL2: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
return "No model was able to analyze the image. See logs for details."
|
| 267 |
|