Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -324,15 +324,15 @@ def complete(sample, k, current_example):
|
|
| 324 |
output = prefix
|
| 325 |
for token in client.text_generation(prefix, do_sample=False, max_new_tokens=512, stream=True):
|
| 326 |
if token == "<|endoftext|>":
|
| 327 |
-
bleu_score = {"BLEU": bleu.compute(predictions=[output],
|
| 328 |
references=[current_example])["bleu"]}
|
| 329 |
return diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
| 330 |
output += token
|
| 331 |
-
bleu_score = {"BLEU": bleu.compute(predictions=[output],
|
| 332 |
references=[current_example])["bleu"]}
|
| 333 |
yield diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
| 334 |
# yield output, diff_texts(output, sample), gr.Label.update(value=bleu_score)
|
| 335 |
-
bleu_score = {"BLEU": bleu.compute(predictions=[output],
|
| 336 |
references=[current_example])["bleu"]}
|
| 337 |
# return output, diff_texts(output, sample), gr.Label.update(value=bleu_score)
|
| 338 |
return diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
|
@@ -386,7 +386,7 @@ with gr.Blocks(theme=style) as demo:
|
|
| 386 |
)
|
| 387 |
|
| 388 |
with gr.Column():
|
| 389 |
-
label = gr.Label(value={"Memorization score (BLEU)": 0},label="
|
| 390 |
with gr.Accordion("What is BLEU?", open=False): # NOTE - THIS WEIRDLY BREAKS EVERYTHING IF I UNCOMMENT
|
| 391 |
gr.Markdown("""[BLEU](https://huggingface.co/spaces/evaluate-metric/bleu) score is a metric that can be used to measure the similarity of two sentences.
|
| 392 |
Here, the higher the BLEU score, the more likely the model will learn the example by heart.
|
|
|
|
| 324 |
output = prefix
|
| 325 |
for token in client.text_generation(prefix, do_sample=False, max_new_tokens=512, stream=True):
|
| 326 |
if token == "<|endoftext|>":
|
| 327 |
+
bleu_score = {"Memorization score (BLEU)": bleu.compute(predictions=[output],
|
| 328 |
references=[current_example])["bleu"]}
|
| 329 |
return diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
| 330 |
output += token
|
| 331 |
+
bleu_score = {"Memorization score (BLEU)": bleu.compute(predictions=[output],
|
| 332 |
references=[current_example])["bleu"]}
|
| 333 |
yield diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
| 334 |
# yield output, diff_texts(output, sample), gr.Label.update(value=bleu_score)
|
| 335 |
+
bleu_score = {"Memorization score (BLEU)": bleu.compute(predictions=[output],
|
| 336 |
references=[current_example])["bleu"]}
|
| 337 |
# return output, diff_texts(output, sample), gr.Label.update(value=bleu_score)
|
| 338 |
return diff(output, current_example), gr.Label.update(value=bleu_score), current_example
|
|
|
|
| 386 |
)
|
| 387 |
|
| 388 |
with gr.Column():
|
| 389 |
+
label = gr.Label(value={"Memorization score (BLEU)": 0},label="Memorization")
|
| 390 |
with gr.Accordion("What is BLEU?", open=False): # NOTE - THIS WEIRDLY BREAKS EVERYTHING IF I UNCOMMENT
|
| 391 |
gr.Markdown("""[BLEU](https://huggingface.co/spaces/evaluate-metric/bleu) score is a metric that can be used to measure the similarity of two sentences.
|
| 392 |
Here, the higher the BLEU score, the more likely the model will learn the example by heart.
|