Spaces:
Runtime error
Runtime error
| import torch | |
| from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
| def get_sentiment(sentences): | |
| bert_dict = {} | |
| vectors = tokenizer(sentences, padding = True, max_length = 65, return_tensors='pt').to(device) | |
| outputs = bert_model(**vectors).logits | |
| probs = torch.nn.functional.softmax(outputs, dim = 1) | |
| for prob in probs: | |
| bert_dict['neg'] = round(prob[0].item(), 3) | |
| bert_dict['neu'] = round(prob[1].item(), 3) | |
| bert_dict['pos'] = round(prob[2].item(), 3) | |
| print (bert_dict) | |
| MODEL_NAME = 'RashidNLP/Finance-Sentiment-Classification' | |
| device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') | |
| bert_model = AutoModelForSequenceClassification.from_pretrained(MODEL_NAME, num_labels = 3).to(device) | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) | |
| get_sentiment(["The stock market will struggle until debt ceiling is increased", "ChatGPT is boosting Microsoft's search engine market share"]) | |