merve's picture
merve HF Staff
ZeroGPU (#4)
d855433 verified
import colorsys
import gc
import tempfile
from collections import defaultdict
from collections.abc import Iterator, Mapping, Sequence
from typing import Any
import cv2
import gradio as gr
import numpy as np
import spaces
import torch
from gradio.themes import Soft
from PIL import Image, ImageDraw, ImageFont
from transformers import Sam3TrackerVideoModel, Sam3TrackerVideoProcessor, Sam3VideoModel, Sam3VideoProcessor
MODEL_ID = "facebook/sam3"
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
DTYPE = torch.bfloat16
TRACKER_MODEL = Sam3TrackerVideoModel.from_pretrained(MODEL_ID, torch_dtype=DTYPE).to(DEVICE).eval()
TRACKER_PROCESSOR = Sam3TrackerVideoProcessor.from_pretrained(MODEL_ID)
TEXT_VIDEO_MODEL = Sam3VideoModel.from_pretrained(MODEL_ID).to(DEVICE, dtype=DTYPE).eval()
TEXT_VIDEO_PROCESSOR = Sam3VideoProcessor.from_pretrained(MODEL_ID)
print("Models loaded successfully!")
MAX_SECONDS = 8.0
def to_device_recursive(obj: Any, device: str | torch.device) -> Any: # noqa: ANN401
"""Return a new object where all torch.Tensors reachable from `obj` are moved to the given device.
- Does NOT mutate the original object.
- Handles:
* torch.Tensor
* Mapping (e.g. dict, defaultdict, OrderedDict, etc.)
* Sequence (e.g. list, tuple) except str/bytes
* Custom classes with attributes (__dict__)
- Tries to preserve container types where reasonable.
"""
device = torch.device(device)
memo = {}
def _convert(x: Any) -> Any: # noqa: ANN401, C901
obj_id = id(x)
if obj_id in memo:
return memo[obj_id]
# 1. Tensor
if isinstance(x, torch.Tensor):
y = x.to(device)
memo[obj_id] = y
return y
# 2. Mapping (dict, defaultdict, etc.)
if isinstance(x, Mapping):
# Special case: defaultdict
if isinstance(x, defaultdict):
y = defaultdict(x.default_factory)
memo[obj_id] = y
for k, v in x.items():
y[k] = _convert(v)
return y
# Try to rebuild the same type using (key, value) pairs
try:
y = type(x)((k, _convert(v)) for k, v in x.items())
memo[obj_id] = y
return y
except TypeError:
# Fallback: plain dict
y = {k: _convert(v) for k, v in x.items()}
memo[obj_id] = y
return y
# 3. Sequence (list/tuple/etc.) but not str/bytes
if isinstance(x, Sequence) and not isinstance(x, (str, bytes, bytearray)):
if isinstance(x, list):
y = [_convert(v) for v in x]
elif isinstance(x, tuple):
y = type(x)(_convert(v) for v in x)
else:
try:
y = type(x)(_convert(v) for v in x)
except TypeError:
y = [_convert(v) for v in x]
memo[obj_id] = y
return y
# 4. Custom object with attributes (__dict__)
if hasattr(x, "__dict__") and not isinstance(x, type):
new_obj = x.__class__.__new__(x.__class__)
memo[obj_id] = new_obj
for name, value in vars(x).items():
setattr(new_obj, name, _convert(value))
return new_obj
# 5. Everything else → keep as-is
memo[obj_id] = x
return x
return _convert(obj)
def try_load_video_frames(video_path_or_url: str) -> tuple[list[Image.Image], dict]:
cap = cv2.VideoCapture(video_path_or_url)
frames = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(Image.fromarray(frame_rgb))
fps_val = cap.get(cv2.CAP_PROP_FPS)
cap.release()
info = {
"num_frames": len(frames),
"fps": float(fps_val) if fps_val and fps_val > 0 else None,
}
return frames, info
def overlay_masks_on_frame(
frame: Image.Image,
masks_per_object: dict[int, np.ndarray],
color_by_obj: dict[int, tuple[int, int, int]],
alpha: float = 0.5,
) -> Image.Image:
base = np.array(frame).astype(np.float32) / 255.0
height, width = base.shape[:2]
overlay = base.copy()
for obj_id, mask in masks_per_object.items():
if mask is None:
continue
if mask.dtype != np.float32:
mask = mask.astype(np.float32)
if mask.ndim == 3:
mask = mask.squeeze()
mask = np.clip(mask, 0.0, 1.0)
color = np.array(color_by_obj.get(obj_id, (255, 0, 0)), dtype=np.float32) / 255.0
a = alpha
m = mask[..., None]
overlay = (1.0 - a * m) * overlay + (a * m) * color
out = np.clip(overlay * 255.0, 0, 255).astype(np.uint8)
return Image.fromarray(out)
def pastel_color_for_object(obj_id: int) -> tuple[int, int, int]:
golden_ratio_conjugate = 0.61
hue = (obj_id * golden_ratio_conjugate) % 1.0
saturation = 0.45
value = 1.0
r_f, g_f, b_f = colorsys.hsv_to_rgb(hue, saturation, value)
return int(r_f * 255), int(g_f * 255), int(b_f * 255)
def pastel_color_for_prompt(prompt_text: str) -> tuple[int, int, int]:
"""Generate a consistent color for a prompt text using a deterministic hash."""
# Use a deterministic hash by summing character codes
# This ensures the same prompt always gets the same color
char_sum = sum(ord(c) for c in prompt_text)
# Use the sum to generate a hue that's well-distributed across the color spectrum
# Multiply by a large prime to spread values out
hue = ((char_sum * 2654435761) % 360) / 360.0
# Use pastel colors (lower saturation, high value)
saturation = 0.5
value = 0.95
r_f, g_f, b_f = colorsys.hsv_to_rgb(hue, saturation, value)
return int(r_f * 255), int(g_f * 255), int(b_f * 255)
class AppState:
def __init__(self) -> None:
self.reset()
def reset(self) -> None:
self.video_frames: list[Image.Image] = []
self.inference_session = None
self.video_fps: float | None = None
self.masks_by_frame: dict[int, dict[int, np.ndarray]] = {}
self.color_by_obj: dict[int, tuple[int, int, int]] = {}
self.color_by_prompt: dict[str, tuple[int, int, int]] = {}
self.clicks_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int]]]] = {}
self.boxes_by_frame_obj: dict[int, dict[int, list[tuple[int, int, int, int]]]] = {}
self.text_prompts_by_frame_obj: dict[int, dict[int, str]] = {}
self.composited_frames: dict[int, Image.Image] = {}
self.current_frame_idx: int = 0
self.current_obj_id: int = 1
self.current_label: str = "positive"
self.current_clear_old: bool = True
self.current_prompt_type: str = "Points"
self.pending_box_start: tuple[int, int] | None = None
self.pending_box_start_frame_idx: int | None = None
self.pending_box_start_obj_id: int | None = None
self.active_tab: str = "point_box"
def __repr__(self) -> str:
return f"AppState(video_frames={len(self.video_frames)}, video_fps={self.video_fps}, masks_by_frame={len(self.masks_by_frame)}, color_by_obj={len(self.color_by_obj)})"
@property
def num_frames(self) -> int:
return len(self.video_frames)
def init_video_session(
state: AppState, video: str | dict, active_tab: str = "point_box"
) -> tuple[AppState, int, int, Image.Image, str]:
state.video_frames = []
state.masks_by_frame = {}
state.color_by_obj = {}
state.color_by_prompt = {}
state.text_prompts_by_frame_obj = {}
state.clicks_by_frame_obj = {}
state.boxes_by_frame_obj = {}
state.composited_frames = {}
state.inference_session = None
state.active_tab = active_tab
video_path: str | None = None
if isinstance(video, dict):
video_path = video.get("name") or video.get("path") or video.get("data")
elif isinstance(video, str):
video_path = video
else:
video_path = None
if not video_path:
raise gr.Error("Invalid video input.")
frames, info = try_load_video_frames(video_path)
if len(frames) == 0:
raise gr.Error("No frames could be loaded from the video.")
trimmed_note = ""
fps_in = info.get("fps")
max_frames_allowed = int(MAX_SECONDS * fps_in) if fps_in else len(frames)
if len(frames) > max_frames_allowed:
frames = frames[:max_frames_allowed]
trimmed_note = f" (trimmed to {int(MAX_SECONDS)}s = {len(frames)} frames)"
if isinstance(info, dict):
info["num_frames"] = len(frames)
state.video_frames = frames
state.video_fps = float(fps_in) if fps_in else None
raw_video = [np.array(frame) for frame in frames]
if active_tab == "text":
processor = TEXT_VIDEO_PROCESSOR
state.inference_session = processor.init_video_session(
video=frames,
inference_device="cpu",
inference_state_device="cpu",
processing_device="cpu",
video_storage_device="cpu",
dtype=DTYPE,
)
else:
processor = TRACKER_PROCESSOR
state.inference_session = processor.init_video_session(
video=raw_video,
inference_device="cpu",
inference_state_device="cpu",
processing_device="cpu",
video_storage_device="cpu",
dtype=DTYPE,
)
state.inference_session.inference_device = DEVICE
state.inference_session.processing_device = DEVICE
state.inference_session.cache.inference_device = DEVICE
first_frame = frames[0]
max_idx = len(frames) - 1
if active_tab == "text":
status = (
f"Loaded {len(frames)} frames @ {state.video_fps or 'unknown'} fps{trimmed_note}. "
f"Device: {DEVICE}, dtype: bfloat16. Ready for text prompting."
)
else:
status = (
f"Loaded {len(frames)} frames @ {state.video_fps or 'unknown'} fps{trimmed_note}. "
f"Device: {DEVICE}, dtype: bfloat16. Video session initialized."
)
return state, 0, max_idx, first_frame, status
def compose_frame(state: AppState, frame_idx: int) -> Image.Image:
if state is None or state.video_frames is None or len(state.video_frames) == 0:
return None
frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
frame = state.video_frames[frame_idx]
masks = state.masks_by_frame.get(frame_idx, {})
out_img = frame
if len(masks) != 0:
out_img = overlay_masks_on_frame(out_img, masks, state.color_by_obj, alpha=0.65)
clicks_map = state.clicks_by_frame_obj.get(frame_idx)
if clicks_map:
draw = ImageDraw.Draw(out_img)
cross_half = 6
for obj_id, pts in clicks_map.items():
for x, y, lbl in pts:
color = (0, 255, 0) if int(lbl) == 1 else (255, 0, 0)
draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
if (
state.pending_box_start is not None
and state.pending_box_start_frame_idx == frame_idx
and state.pending_box_start_obj_id is not None
):
draw = ImageDraw.Draw(out_img)
x, y = state.pending_box_start
cross_half = 6
color = state.color_by_obj.get(state.pending_box_start_obj_id, (255, 255, 255))
draw.line([(x - cross_half, y), (x + cross_half, y)], fill=color, width=2)
draw.line([(x, y - cross_half), (x, y + cross_half)], fill=color, width=2)
box_map = state.boxes_by_frame_obj.get(frame_idx)
if box_map:
draw = ImageDraw.Draw(out_img)
for obj_id, boxes in box_map.items():
color = state.color_by_obj.get(obj_id, (255, 255, 255))
for x1, y1, x2, y2 in boxes:
draw.rectangle([(x1, y1), (x2, y2)], outline=color, width=2)
text_prompts_by_obj = {}
for frame_texts in state.text_prompts_by_frame_obj.values():
for obj_id, text_prompt in frame_texts.items():
if obj_id not in text_prompts_by_obj:
text_prompts_by_obj[obj_id] = text_prompt
if text_prompts_by_obj and len(masks) > 0:
draw = ImageDraw.Draw(out_img)
# Calculate scale factor based on image size (reference: 720p height = 720)
img_width, img_height = out_img.size
reference_height = 720.0
scale_factor = img_height / reference_height
# Scale font size (base size ~13 pixels for default font, scale proportionally)
base_font_size = 13
font_size = max(10, int(base_font_size * scale_factor))
# Try to load a scalable font, fall back to default if not available
try:
# Try common system fonts
font_paths = [
"/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf",
"/System/Library/Fonts/Helvetica.ttc",
"arial.ttf",
]
font = None
for font_path in font_paths:
try:
font = ImageFont.truetype(font_path, font_size)
break
except OSError:
continue
if font is None:
# Fallback to default font
font = ImageFont.load_default()
except Exception:
font = ImageFont.load_default()
for obj_id, text_prompt in text_prompts_by_obj.items():
obj_mask = masks.get(obj_id)
if obj_mask is not None:
mask_array = np.array(obj_mask)
if mask_array.size > 0 and np.any(mask_array):
rows = np.any(mask_array, axis=1)
cols = np.any(mask_array, axis=0)
if np.any(rows) and np.any(cols):
y_min, y_max = np.where(rows)[0][[0, -1]]
x_min, x_max = np.where(cols)[0][[0, -1]]
label_x = int(x_min)
# Scale vertical offset and padding
vertical_offset = int(20 * scale_factor)
padding = max(2, int(4 * scale_factor))
label_y = int(y_min) - vertical_offset
label_y = max(int(5 * scale_factor), label_y)
obj_color = state.color_by_obj.get(obj_id, (255, 255, 255))
# Include object ID in the label
label_text = f"{text_prompt} - ID {obj_id}"
bbox = draw.textbbox((label_x, label_y), label_text, font=font)
draw.rectangle(
[(bbox[0] - padding, bbox[1] - padding), (bbox[2] + padding, bbox[3] + padding)],
fill=obj_color,
outline=None,
width=0,
)
draw.text((label_x, label_y), label_text, fill=(255, 255, 255), font=font)
state.composited_frames[frame_idx] = out_img
return out_img
def update_frame_display(state: AppState, frame_idx: int) -> Image.Image:
if state is None or state.video_frames is None or len(state.video_frames) == 0:
return None
frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
cached = state.composited_frames.get(frame_idx)
if cached is not None:
return cached
return compose_frame(state, frame_idx)
def _get_prompt_for_obj(state: AppState, obj_id: int) -> str | None:
"""Get the prompt text associated with an object ID."""
# Priority 1: Check text_prompts_by_frame_obj (most reliable)
for frame_texts in state.text_prompts_by_frame_obj.values():
if obj_id in frame_texts:
return frame_texts[obj_id].strip()
# Priority 2: Check inference session mapping
if state.inference_session is not None and (
hasattr(state.inference_session, "obj_id_to_prompt_id")
and obj_id in state.inference_session.obj_id_to_prompt_id
):
prompt_id = state.inference_session.obj_id_to_prompt_id[obj_id]
if hasattr(state.inference_session, "prompts") and prompt_id in state.inference_session.prompts:
return state.inference_session.prompts[prompt_id].strip()
return None
def _ensure_color_for_obj(state: AppState, obj_id: int) -> None:
"""Assign color to object based on its prompt if available, otherwise use object ID."""
prompt_text = _get_prompt_for_obj(state, obj_id)
if prompt_text is not None:
# Ensure prompt has a color assigned
if prompt_text not in state.color_by_prompt:
state.color_by_prompt[prompt_text] = pastel_color_for_prompt(prompt_text)
# Always update to prompt-based color
state.color_by_obj[obj_id] = state.color_by_prompt[prompt_text]
elif obj_id not in state.color_by_obj:
# Fallback to object ID-based color (for point/box prompting mode)
state.color_by_obj[obj_id] = pastel_color_for_object(obj_id)
@spaces.GPU
def on_image_click(
img: Image.Image | np.ndarray,
state: AppState,
frame_idx: int,
obj_id: int,
label: str,
clear_old: bool,
evt: gr.SelectData,
) -> tuple[Image.Image, AppState]:
if state is None or state.inference_session is None:
return img
model = TRACKER_MODEL
processor = TRACKER_PROCESSOR
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
x = y = None
if evt is not None:
try:
if hasattr(evt, "index") and isinstance(evt.index, (list, tuple)) and len(evt.index) == 2:
x, y = int(evt.index[0]), int(evt.index[1])
elif hasattr(evt, "value") and isinstance(evt.value, dict) and "x" in evt.value and "y" in evt.value:
x, y = int(evt.value["x"]), int(evt.value["y"])
except Exception:
x = y = None
if x is None or y is None:
raise gr.Error("Could not read click coordinates.")
_ensure_color_for_obj(state, int(obj_id))
ann_frame_idx = int(frame_idx)
ann_obj_id = int(obj_id)
if state.current_prompt_type == "Boxes":
if state.pending_box_start is None:
frame_clicks = state.clicks_by_frame_obj.setdefault(ann_frame_idx, {})
frame_clicks[ann_obj_id] = []
state.composited_frames.pop(ann_frame_idx, None)
state.pending_box_start = (int(x), int(y))
state.pending_box_start_frame_idx = ann_frame_idx
state.pending_box_start_obj_id = ann_obj_id
state.composited_frames.pop(ann_frame_idx, None)
return update_frame_display(state, ann_frame_idx)
x1, y1 = state.pending_box_start
x2, y2 = int(x), int(y)
state.pending_box_start = None
state.pending_box_start_frame_idx = None
state.pending_box_start_obj_id = None
state.composited_frames.pop(ann_frame_idx, None)
x_min, y_min = min(x1, x2), min(y1, y2)
x_max, y_max = max(x1, x2), max(y1, y2)
box = [[[x_min, y_min, x_max, y_max]]]
processor.add_inputs_to_inference_session(
inference_session=state.inference_session,
frame_idx=ann_frame_idx,
obj_ids=ann_obj_id,
input_boxes=box,
)
frame_boxes = state.boxes_by_frame_obj.setdefault(ann_frame_idx, {})
obj_boxes = frame_boxes.setdefault(ann_obj_id, [])
obj_boxes.clear()
obj_boxes.append((x_min, y_min, x_max, y_max))
state.composited_frames.pop(ann_frame_idx, None)
else:
label_int = 1 if str(label).lower().startswith("pos") else 0
frame_clicks = state.clicks_by_frame_obj.setdefault(ann_frame_idx, {})
obj_clicks = frame_clicks.setdefault(ann_obj_id, [])
if bool(clear_old):
obj_clicks.clear()
frame_boxes = state.boxes_by_frame_obj.setdefault(ann_frame_idx, {})
frame_boxes[ann_obj_id] = []
if hasattr(state.inference_session, "reset_inference_session"):
pass
obj_clicks.append((int(x), int(y), int(label_int)))
points = [[[[click[0], click[1]] for click in obj_clicks]]]
labels = [[[click[2] for click in obj_clicks]]]
processor.add_inputs_to_inference_session(
inference_session=state.inference_session,
frame_idx=ann_frame_idx,
obj_ids=ann_obj_id,
input_points=points,
input_labels=labels,
)
state.composited_frames.pop(ann_frame_idx, None)
with torch.no_grad():
outputs = model(
inference_session=state.inference_session,
frame_idx=ann_frame_idx,
)
out_mask_logits = processor.post_process_masks(
[outputs.pred_masks],
[[state.inference_session.video_height, state.inference_session.video_width]],
binarize=False,
)[0]
mask_2d = (out_mask_logits[0] > 0.0).cpu().numpy()
masks_for_frame = state.masks_by_frame.setdefault(ann_frame_idx, {})
masks_for_frame[ann_obj_id] = mask_2d
state.composited_frames.pop(ann_frame_idx, None)
state.inference_session = to_device_recursive(state.inference_session, "cpu")
return update_frame_display(state, ann_frame_idx), state
@spaces.GPU
def on_text_prompt(
state: AppState,
frame_idx: int,
text_prompt: str,
) -> tuple[Image.Image, str, str, AppState]:
if state is None or state.inference_session is None:
return None, "Upload a video and enter text prompt.", "**Active prompts:** None"
model = TEXT_VIDEO_MODEL
processor = TEXT_VIDEO_PROCESSOR
if not text_prompt or not text_prompt.strip():
active_prompts = _get_active_prompts_display(state)
return update_frame_display(state, int(frame_idx)), "Please enter a text prompt.", active_prompts, state
frame_idx = int(np.clip(frame_idx, 0, len(state.video_frames) - 1))
# Parse comma-separated prompts or single prompt
prompt_texts = [p.strip() for p in text_prompt.split(",") if p.strip()]
if not prompt_texts:
active_prompts = _get_active_prompts_display(state)
return update_frame_display(state, int(frame_idx)), "Please enter a valid text prompt.", active_prompts, state
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
# Add text prompt(s) - supports both single string and list of strings
state.inference_session = processor.add_text_prompt(
inference_session=state.inference_session,
text=prompt_texts, # Pass as list to add multiple at once
)
masks_for_frame = state.masks_by_frame.setdefault(frame_idx, {})
frame_texts = state.text_prompts_by_frame_obj.setdefault(int(frame_idx), {})
num_objects = 0
detected_obj_ids = []
prompt_to_obj_ids_summary = {}
with torch.no_grad():
for model_outputs in model.propagate_in_video_iterator(
inference_session=state.inference_session,
start_frame_idx=frame_idx,
max_frame_num_to_track=1,
):
processed_outputs = processor.postprocess_outputs(
state.inference_session,
model_outputs,
)
current_frame_idx = model_outputs.frame_idx
if current_frame_idx == frame_idx:
object_ids = processed_outputs["object_ids"]
masks = processed_outputs["masks"]
scores = processed_outputs["scores"]
prompt_to_obj_ids = processed_outputs.get("prompt_to_obj_ids", {})
# Update prompt_to_obj_ids summary for status message
for prompt, obj_ids in prompt_to_obj_ids.items():
if prompt not in prompt_to_obj_ids_summary:
prompt_to_obj_ids_summary[prompt] = []
prompt_to_obj_ids_summary[prompt].extend(
[int(oid) for oid in obj_ids if int(oid) not in prompt_to_obj_ids_summary[prompt]]
)
num_objects = len(object_ids)
if num_objects > 0:
if len(scores) > 0:
sorted_indices = torch.argsort(scores, descending=True).cpu().tolist()
else:
sorted_indices = list(range(num_objects))
for mask_idx in sorted_indices:
current_obj_id = int(object_ids[mask_idx].item())
detected_obj_ids.append(current_obj_id)
mask_2d = masks[mask_idx].float().cpu().numpy()
if mask_2d.ndim == 3:
mask_2d = mask_2d.squeeze()
mask_2d = (mask_2d > 0.0).astype(np.float32)
masks_for_frame[current_obj_id] = mask_2d
# Find which prompt detected this object
detected_prompt = None
for prompt, obj_ids in prompt_to_obj_ids.items():
if current_obj_id in obj_ids:
detected_prompt = prompt
break
# Store prompt and assign color
if detected_prompt:
frame_texts[current_obj_id] = detected_prompt.strip()
_ensure_color_for_obj(state, current_obj_id)
state.composited_frames.pop(frame_idx, None)
# Build status message with prompt breakdown
if detected_obj_ids:
status_parts = [f"Processed text prompt(s) on frame {frame_idx}. Found {num_objects} object(s):"]
for prompt, obj_ids in prompt_to_obj_ids_summary.items():
if obj_ids:
obj_ids_str = ", ".join(map(str, sorted(obj_ids)))
status_parts.append(f" • '{prompt}': {len(obj_ids)} object(s) (IDs: {obj_ids_str})")
status = "\n".join(status_parts)
else:
prompts_str = ", ".join([f"'{p}'" for p in prompt_texts])
status = f"Processed text prompt(s) {prompts_str} on frame {frame_idx}. No objects detected."
active_prompts = _get_active_prompts_display(state)
state.inference_session = to_device_recursive(state.inference_session, "cpu")
return update_frame_display(state, int(frame_idx)), status, active_prompts, state
def _get_active_prompts_display(state: AppState) -> str:
"""Get a formatted string showing all active prompts in the inference session."""
if state is None or state.inference_session is None:
return "**Active prompts:** None"
if hasattr(state.inference_session, "prompts") and state.inference_session.prompts:
prompts_list = sorted(set(state.inference_session.prompts.values()))
if prompts_list:
prompts_str = ", ".join([f"'{p}'" for p in prompts_list])
return f"**Active prompts:** {prompts_str}"
return "**Active prompts:** None"
@spaces.GPU
def propagate_masks(state: AppState) -> Iterator[tuple[AppState, str, dict]]:
if state is None:
return state, "Load a video first.", gr.update()
if state.active_tab != "text" and state.inference_session is None:
return state, "Load a video first.", gr.update()
total = max(1, state.num_frames)
processed = 0
yield state, f"Propagating masks: {processed}/{total}", gr.update()
last_frame_idx = 0
with torch.no_grad():
if state.active_tab == "text":
if state.inference_session is None:
yield state, "Text video model not loaded.", gr.update()
return
model = TEXT_VIDEO_MODEL
processor = TEXT_VIDEO_PROCESSOR
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
# Collect all unique prompts from existing frame annotations
text_prompt_to_obj_ids = {}
for frame_idx, frame_texts in state.text_prompts_by_frame_obj.items():
for obj_id, text_prompt in frame_texts.items():
if text_prompt not in text_prompt_to_obj_ids:
text_prompt_to_obj_ids[text_prompt] = []
if obj_id not in text_prompt_to_obj_ids[text_prompt]:
text_prompt_to_obj_ids[text_prompt].append(obj_id)
# Also check if there are prompts already in the inference session
if hasattr(state.inference_session, "prompts") and state.inference_session.prompts:
for prompt_text in state.inference_session.prompts.values():
if prompt_text not in text_prompt_to_obj_ids:
text_prompt_to_obj_ids[prompt_text] = []
for text_prompt in text_prompt_to_obj_ids:
text_prompt_to_obj_ids[text_prompt].sort()
if not text_prompt_to_obj_ids:
state.inference_session = to_device_recursive(state.inference_session, "cpu")
yield state, "No text prompts found. Please add a text prompt first.", gr.update()
return
# Add all prompts to the inference session (processor handles deduplication)
for text_prompt in text_prompt_to_obj_ids:
state.inference_session = processor.add_text_prompt(
inference_session=state.inference_session,
text=text_prompt,
)
earliest_frame = min(state.text_prompts_by_frame_obj.keys()) if state.text_prompts_by_frame_obj else 0
frames_to_track = state.num_frames - earliest_frame
outputs_per_frame = {}
for model_outputs in model.propagate_in_video_iterator(
inference_session=state.inference_session,
start_frame_idx=earliest_frame,
max_frame_num_to_track=frames_to_track,
):
processed_outputs = processor.postprocess_outputs(
state.inference_session,
model_outputs,
)
frame_idx = model_outputs.frame_idx
outputs_per_frame[frame_idx] = processed_outputs
object_ids = processed_outputs["object_ids"]
masks = processed_outputs["masks"]
scores = processed_outputs["scores"]
prompt_to_obj_ids = processed_outputs.get("prompt_to_obj_ids", {})
masks_for_frame = state.masks_by_frame.setdefault(frame_idx, {})
frame_texts = state.text_prompts_by_frame_obj.setdefault(frame_idx, {})
num_objects = len(object_ids)
if num_objects > 0:
if len(scores) > 0:
sorted_indices = torch.argsort(scores, descending=True).cpu().tolist()
else:
sorted_indices = list(range(num_objects))
for mask_idx in sorted_indices:
current_obj_id = int(object_ids[mask_idx].item())
mask_2d = masks[mask_idx].float().cpu().numpy()
if mask_2d.ndim == 3:
mask_2d = mask_2d.squeeze()
mask_2d = (mask_2d > 0.0).astype(np.float32)
masks_for_frame[current_obj_id] = mask_2d
# Find which prompt detected this object
found_prompt = None
for prompt, obj_ids in prompt_to_obj_ids.items():
if current_obj_id in obj_ids:
found_prompt = prompt
break
# Store prompt and assign color
if found_prompt:
frame_texts[current_obj_id] = found_prompt.strip()
_ensure_color_for_obj(state, current_obj_id)
state.composited_frames.pop(frame_idx, None)
last_frame_idx = frame_idx
processed += 1
if processed % 30 == 0 or processed == total:
state.inference_session = to_device_recursive(state.inference_session, "cpu")
yield state, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
else:
if state.inference_session is None:
yield state, "Tracker model not loaded.", gr.update()
return
model = TRACKER_MODEL
processor = TRACKER_PROCESSOR
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
for sam2_video_output in model.propagate_in_video_iterator(inference_session=state.inference_session):
video_res_masks = processor.post_process_masks(
[sam2_video_output.pred_masks],
original_sizes=[[state.inference_session.video_height, state.inference_session.video_width]],
)[0]
frame_idx = sam2_video_output.frame_idx
for i, out_obj_id in enumerate(state.inference_session.obj_ids):
_ensure_color_for_obj(state, int(out_obj_id))
mask_2d = video_res_masks[i].cpu().numpy()
masks_for_frame = state.masks_by_frame.setdefault(frame_idx, {})
masks_for_frame[int(out_obj_id)] = mask_2d
state.composited_frames.pop(frame_idx, None)
last_frame_idx = frame_idx
processed += 1
if processed % 30 == 0 or processed == total:
state.inference_session = to_device_recursive(state.inference_session, "cpu")
yield state, f"Propagating masks: {processed}/{total}", gr.update(value=frame_idx)
state.inference_session = to_device_recursive(state.inference_session, DEVICE)
text = f"Propagated masks across {processed} frames."
state.inference_session = to_device_recursive(state.inference_session, "cpu")
yield state, text, gr.update(value=last_frame_idx)
def reset_prompts(state: AppState) -> tuple[AppState, Image.Image, str, str]:
"""Reset prompts and all outputs, but keep processed frames and cached vision features."""
if state is None or state.inference_session is None:
active_prompts = _get_active_prompts_display(state)
return state, None, "No active session to reset.", active_prompts
if state.active_tab != "text":
active_prompts = _get_active_prompts_display(state)
return state, None, "Reset prompts is only available for text prompting mode.", active_prompts
# Reset inference session tracking data but keep cache and processed frames
if hasattr(state.inference_session, "reset_tracking_data"):
state.inference_session.reset_tracking_data()
# Manually clear prompts (reset_tracking_data doesn't clear prompts themselves)
if hasattr(state.inference_session, "prompts"):
state.inference_session.prompts.clear()
if hasattr(state.inference_session, "prompt_input_ids"):
state.inference_session.prompt_input_ids.clear()
if hasattr(state.inference_session, "prompt_embeddings"):
state.inference_session.prompt_embeddings.clear()
if hasattr(state.inference_session, "prompt_attention_masks"):
state.inference_session.prompt_attention_masks.clear()
if hasattr(state.inference_session, "obj_id_to_prompt_id"):
state.inference_session.obj_id_to_prompt_id.clear()
# Reset detection-tracking fusion state
if hasattr(state.inference_session, "obj_id_to_score"):
state.inference_session.obj_id_to_score.clear()
if hasattr(state.inference_session, "obj_id_to_tracker_score_frame_wise"):
state.inference_session.obj_id_to_tracker_score_frame_wise.clear()
if hasattr(state.inference_session, "obj_id_to_last_occluded"):
state.inference_session.obj_id_to_last_occluded.clear()
if hasattr(state.inference_session, "max_obj_id"):
state.inference_session.max_obj_id = -1
if hasattr(state.inference_session, "obj_first_frame_idx"):
state.inference_session.obj_first_frame_idx.clear()
if hasattr(state.inference_session, "unmatched_frame_inds"):
state.inference_session.unmatched_frame_inds.clear()
if hasattr(state.inference_session, "overlap_pair_to_frame_inds"):
state.inference_session.overlap_pair_to_frame_inds.clear()
if hasattr(state.inference_session, "trk_keep_alive"):
state.inference_session.trk_keep_alive.clear()
if hasattr(state.inference_session, "removed_obj_ids"):
state.inference_session.removed_obj_ids.clear()
if hasattr(state.inference_session, "suppressed_obj_ids"):
state.inference_session.suppressed_obj_ids.clear()
if hasattr(state.inference_session, "hotstart_removed_obj_ids"):
state.inference_session.hotstart_removed_obj_ids.clear()
# Clear all app state outputs
state.masks_by_frame.clear()
state.text_prompts_by_frame_obj.clear()
state.composited_frames.clear()
state.color_by_obj.clear()
state.color_by_prompt.clear()
# Update display
current_idx = int(getattr(state, "current_frame_idx", 0))
current_idx = max(0, min(current_idx, state.num_frames - 1))
preview_img = update_frame_display(state, current_idx)
active_prompts = _get_active_prompts_display(state)
status = "Prompts and outputs reset. Processed frames and cached vision features preserved."
return state, preview_img, status, active_prompts
def reset_session(state: AppState) -> tuple[AppState, Image.Image, int, int, str, str]:
if not state.video_frames:
return state, None, 0, 0, "Session reset. Load a new video.", "**Active prompts:** None"
if state.active_tab == "text":
if state.video_frames:
processor = TEXT_VIDEO_PROCESSOR
state.inference_session = processor.init_video_session(
video=state.video_frames,
inference_device=DEVICE,
processing_device="cpu",
video_storage_device="cpu",
dtype=DTYPE,
)
elif state.inference_session is not None and hasattr(state.inference_session, "reset_inference_session"):
state.inference_session.reset_inference_session()
elif state.video_frames:
processor = TRACKER_PROCESSOR
raw_video = [np.array(frame) for frame in state.video_frames]
state.inference_session = processor.init_video_session(
video=raw_video,
inference_device=DEVICE,
video_storage_device="cpu",
processing_device="cpu",
dtype=DTYPE,
)
state.masks_by_frame.clear()
state.clicks_by_frame_obj.clear()
state.boxes_by_frame_obj.clear()
state.text_prompts_by_frame_obj.clear()
state.composited_frames.clear()
state.color_by_obj.clear()
state.color_by_prompt.clear()
state.pending_box_start = None
state.pending_box_start_frame_idx = None
state.pending_box_start_obj_id = None
gc.collect()
current_idx = int(getattr(state, "current_frame_idx", 0))
current_idx = max(0, min(current_idx, state.num_frames - 1))
preview_img = update_frame_display(state, current_idx)
slider_minmax = gr.update(minimum=0, maximum=max(state.num_frames - 1, 0), interactive=True)
slider_value = gr.update(value=current_idx)
status = "Session reset. Prompts cleared; video preserved."
active_prompts = _get_active_prompts_display(state)
return state, preview_img, slider_minmax, slider_value, status, active_prompts
def _on_video_change_pointbox(state: AppState, video: str | dict) -> tuple[AppState, dict, Image.Image, str]:
state, min_idx, max_idx, first_frame, status = init_video_session(state, video, "point_box")
return (
state,
gr.update(minimum=min_idx, maximum=max_idx, value=min_idx, interactive=True),
first_frame,
status,
)
def _on_video_change_text(state: AppState, video: str | dict) -> tuple[AppState, dict, Image.Image, str, str]:
if video is None:
return state, None, None, None, None
state, min_idx, max_idx, first_frame, status = init_video_session(state, video, "text")
active_prompts = _get_active_prompts_display(state)
return (
state,
gr.update(minimum=min_idx, maximum=max_idx, value=min_idx, interactive=True),
first_frame,
status,
active_prompts,
)
with gr.Blocks(title="SAM3", theme=Soft(primary_hue="blue", secondary_hue="rose", neutral_hue="slate")) as demo:
app_state = gr.State(AppState())
gr.Markdown(
"""
### SAM3 Video Tracking · powered by Hugging Face 🤗 Transformers
Segment and track objects across a video with SAM3 (Segment Anything 3). This demo runs the official implementation from the Hugging Face Transformers library for interactive, promptable video segmentation with point, box, and text prompts.
"""
)
with gr.Tabs() as main_tabs:
with gr.Tab("Text Prompting"):
with gr.Row():
with gr.Column():
gr.Markdown(
"""
**Quick start**
- **Load a video**: Upload your own or pick an example below.
- Select a frame and enter text description(s) to segment objects (e.g., "red car", "penguin"). You can add multiple prompts separated by commas (e.g., "person, bed, lamp") or add them one by one. The text prompt will return all the instances of the object in the frame and not specific ones (e.g. not "penguin on the left" but "penguin").
"""
)
with gr.Column():
gr.Markdown(
"""
**Working with results**
- **Preview**: Use the slider to navigate frames and see the current masks.
- **Propagate**: Click "Propagate across video" to track all defined objects through the entire video.
- **Export**: Render an MP4 for smooth playback using the original video FPS.
"""
)
with gr.Row():
with gr.Column(scale=1):
video_in_text = gr.Video(label="Upload video", sources=["upload", "webcam"])
load_status_text = gr.Markdown(visible=True)
reset_btn_text = gr.Button("Reset Session", variant="secondary")
with gr.Column(scale=2):
preview_text = gr.Image(label="Preview")
with gr.Row():
frame_slider_text = gr.Slider(label="Frame", minimum=0, maximum=0, step=1, value=0)
with gr.Column(scale=0):
propagate_btn_text = gr.Button("Propagate across video", variant="primary")
propagate_status_text = gr.Markdown(visible=True)
with gr.Row():
text_prompt_input = gr.Textbox(
label="Text Prompt(s)",
placeholder="Enter text description(s) (e.g., 'person' or 'person, bed, lamp' for multiple)",
lines=2,
)
with gr.Column(scale=0):
text_apply_btn = gr.Button("Apply Text Prompt(s)", variant="primary")
reset_prompts_btn = gr.Button("Reset Prompts", variant="secondary")
active_prompts_display = gr.Markdown("**Active prompts:** None", visible=True)
text_status = gr.Markdown(visible=True)
with gr.Row():
render_btn_text = gr.Button("Render MP4 for smooth playback", variant="primary")
playback_video_text = gr.Video(label="Rendered Playback", interactive=False)
examples_list_text = [
[None, "./deers.mp4"],
[None, "./penguins.mp4"],
[None, "./foot.mp4"],
]
with gr.Row():
gr.Examples(
label="Examples",
examples=examples_list_text,
inputs=[app_state, video_in_text],
examples_per_page=5,
)
with gr.Tab("Point/Box Prompting"):
with gr.Row():
with gr.Column():
gr.Markdown(
"""
**Quick start**
- **Load a video**: Upload your own or pick an example below.
- Select an Object ID and point label (positive/negative), then click the frame to add guidance. You can add **multiple points per object** and define **multiple objects** across frames.
"""
)
with gr.Column():
gr.Markdown(
"""
**Working with results**
- **Preview**: Use the slider to navigate frames and see the current masks.
- **Propagate**: Click "Propagate across video" to track all defined objects through the entire video.
- **Export**: Render an MP4 for smooth playback using the original video FPS.
"""
)
with gr.Row():
with gr.Column(scale=1):
video_in_pointbox = gr.Video(label="Upload video", sources=["upload", "webcam"], max_length=7)
load_status_pointbox = gr.Markdown(visible=True)
reset_btn_pointbox = gr.Button("Reset Session", variant="secondary")
with gr.Column(scale=2):
preview_pointbox = gr.Image(label="Preview")
with gr.Row():
frame_slider_pointbox = gr.Slider(label="Frame", minimum=0, maximum=0, step=1, value=0)
with gr.Column(scale=0):
propagate_btn_pointbox = gr.Button("Propagate across video", variant="primary")
propagate_status_pointbox = gr.Markdown(visible=True)
with gr.Row():
obj_id_inp = gr.Number(value=1, precision=0, label="Object ID", scale=0)
label_radio = gr.Radio(choices=["positive", "negative"], value="positive", label="Point label")
clear_old_chk = gr.Checkbox(value=False, label="Clear old inputs for this object")
prompt_type = gr.Radio(choices=["Points", "Boxes"], value="Points", label="Prompt type")
with gr.Row():
render_btn_pointbox = gr.Button("Render MP4 for smooth playback", variant="primary")
playback_video_pointbox = gr.Video(label="Rendered Playback", interactive=False)
examples_list_pointbox = [
[None, "./deers.mp4"],
[None, "./penguins.mp4"],
[None, "./foot.mp4"],
]
with gr.Row():
gr.Examples(
label="Examples",
examples=examples_list_pointbox,
inputs=[app_state, video_in_pointbox],
examples_per_page=5,
)
video_in_pointbox.change(
fn=_on_video_change_pointbox,
inputs=[app_state, video_in_pointbox],
outputs=[app_state, frame_slider_pointbox, preview_pointbox, load_status_pointbox],
show_progress=True,
)
def _sync_frame_idx_pointbox(state_in: AppState, idx: int) -> Image.Image:
if state_in is not None:
state_in.current_frame_idx = int(idx)
return update_frame_display(state_in, int(idx))
frame_slider_pointbox.change(
fn=_sync_frame_idx_pointbox,
inputs=[app_state, frame_slider_pointbox],
outputs=preview_pointbox,
)
video_in_text.change(
fn=_on_video_change_text,
inputs=[app_state, video_in_text],
outputs=[app_state, frame_slider_text, preview_text, load_status_text, active_prompts_display],
show_progress=True,
)
def _sync_frame_idx_text(state_in: AppState, idx: int) -> Image.Image:
if state_in is not None:
state_in.current_frame_idx = int(idx)
return update_frame_display(state_in, int(idx))
frame_slider_text.change(
fn=_sync_frame_idx_text,
inputs=[app_state, frame_slider_text],
outputs=preview_text,
)
def _sync_obj_id(s: AppState, oid: int) -> None:
if s is not None and oid is not None:
s.current_obj_id = int(oid)
obj_id_inp.change(
fn=_sync_obj_id,
inputs=[app_state, obj_id_inp],
)
def _sync_label(s: AppState, lab: str) -> None:
if s is not None and lab is not None:
s.current_label = str(lab)
label_radio.change(
fn=_sync_label,
inputs=[app_state, label_radio],
)
def _sync_prompt_type(s: AppState, val: str) -> tuple[dict, dict]:
if s is not None and val is not None:
s.current_prompt_type = str(val)
s.pending_box_start = None
is_points = str(val).lower() == "points"
return (
gr.update(visible=is_points),
gr.update(interactive=is_points) if is_points else gr.update(value=True, interactive=False),
)
prompt_type.change(
fn=_sync_prompt_type,
inputs=[app_state, prompt_type],
outputs=[label_radio, clear_old_chk],
)
preview_pointbox.select(
fn=on_image_click,
inputs=[preview_pointbox, app_state, frame_slider_pointbox, obj_id_inp, label_radio, clear_old_chk],
outputs=[preview_pointbox, app_state],
)
text_apply_btn.click(
fn=on_text_prompt,
inputs=[app_state, frame_slider_text, text_prompt_input],
outputs=[preview_text, text_status, active_prompts_display, app_state],
)
reset_prompts_btn.click(
fn=reset_prompts,
inputs=app_state,
outputs=[app_state, preview_text, text_status, active_prompts_display],
)
def _render_video(s: AppState) -> str:
if s is None or s.num_frames == 0:
raise gr.Error("Load a video first.")
fps = s.video_fps if s.video_fps and s.video_fps > 0 else 12
frames_np = []
first = compose_frame(s, 0)
h, w = first.size[1], first.size[0]
for idx in range(s.num_frames):
img = s.composited_frames.get(idx)
if img is None:
img = compose_frame(s, idx)
frames_np.append(np.array(img)[:, :, ::-1])
if (idx + 1) % 60 == 0:
gc.collect()
try:
with tempfile.NamedTemporaryFile(suffix=".mp4", delete=False) as out_path:
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
writer = cv2.VideoWriter(out_path.name, fourcc, fps, (w, h))
for fr_bgr in frames_np:
writer.write(fr_bgr)
writer.release()
return out_path.name
except Exception as e:
print(f"Failed to render video with cv2: {e}")
raise gr.Error(f"Failed to render video: {e}")
render_btn_pointbox.click(
fn=_render_video,
inputs=app_state,
outputs=playback_video_pointbox,
)
render_btn_text.click(
fn=_render_video,
inputs=app_state,
outputs=playback_video_text,
)
propagate_btn_pointbox.click(
fn=propagate_masks,
inputs=app_state,
outputs=[app_state, propagate_status_pointbox, frame_slider_pointbox],
)
propagate_btn_text.click(
fn=propagate_masks,
inputs=app_state,
outputs=[app_state, propagate_status_text, frame_slider_text],
)
reset_btn_pointbox.click(
fn=reset_session,
inputs=app_state,
outputs=[app_state, preview_pointbox, frame_slider_pointbox, frame_slider_pointbox, load_status_pointbox],
)
reset_btn_text.click(
fn=reset_session,
inputs=app_state,
outputs=[
app_state,
preview_text,
frame_slider_text,
frame_slider_text,
load_status_text,
active_prompts_display,
],
)
demo.queue(api_open=False).launch()