Spaces:
Runtime error
Runtime error
maximilian
commited on
Commit
·
36a6fc9
1
Parent(s):
d65aa05
initial commit
Browse files- app.py +101 -0
- image1.jpg +0 -0
- image2.jpg +0 -0
- pre-requirements.txt +1 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 3 |
+
import spaces
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import subprocess
|
| 7 |
+
subprocess.run("pip install flash-attn --no-build-isolation", env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"}, shell=True)
|
| 8 |
+
|
| 9 |
+
models = {
|
| 10 |
+
"maxiw/Florence-2-ScreenQA-base": AutoModelForCausalLM.from_pretrained("maxiw/Florence-2-ScreenQA-base", trust_remote_code=True).to("cuda").eval(),
|
| 11 |
+
}
|
| 12 |
+
|
| 13 |
+
processors = {
|
| 14 |
+
"maxiw/Florence-2-ScreenQA-base": AutoProcessor.from_pretrained("maxiw/Florence-2-ScreenQA-base", trust_remote_code=True),
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
DESCRIPTION = "# [Florence-2-ScreenQA Demo](https://huggingface.co/maxiw/Florence-2-ScreenQA-base)"
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@spaces.GPU
|
| 22 |
+
def run_example(task_prompt, image, text_input=None, model_id="maxiw/Florence-2-ScreenQA-base"):
|
| 23 |
+
model = models[model_id]
|
| 24 |
+
processor = processors[model_id]
|
| 25 |
+
if text_input is None:
|
| 26 |
+
prompt = task_prompt
|
| 27 |
+
else:
|
| 28 |
+
prompt = task_prompt + text_input
|
| 29 |
+
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda")
|
| 30 |
+
generated_ids = model.generate(
|
| 31 |
+
input_ids=inputs["input_ids"],
|
| 32 |
+
pixel_values=inputs["pixel_values"],
|
| 33 |
+
max_new_tokens=1024,
|
| 34 |
+
early_stopping=False,
|
| 35 |
+
do_sample=False,
|
| 36 |
+
num_beams=3,
|
| 37 |
+
)
|
| 38 |
+
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
| 39 |
+
parsed_answer = processor.post_process_generation(
|
| 40 |
+
generated_text,
|
| 41 |
+
task=task_prompt,
|
| 42 |
+
image_size=(image.width, image.height)
|
| 43 |
+
)
|
| 44 |
+
if "<SQA>" in parsed_answer:
|
| 45 |
+
parsed_answer = parsed_answer["<SQA>"]
|
| 46 |
+
return parsed_answer
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def process_image(image, task_prompt, text_input=None, model_id="maxiw/Florence-2-ScreenQA-base"):
|
| 50 |
+
image = Image.fromarray(image) # Convert NumPy array to PIL Image
|
| 51 |
+
if task_prompt == "ScreenQA":
|
| 52 |
+
task_prompt = "<SQA>"
|
| 53 |
+
results = run_example(task_prompt, image, text_input, model_id=model_id)
|
| 54 |
+
return results
|
| 55 |
+
else:
|
| 56 |
+
print("Unknown task prompt")
|
| 57 |
+
return "", None # Return empty string and None for unknown task prompts
|
| 58 |
+
|
| 59 |
+
css = """
|
| 60 |
+
#output {
|
| 61 |
+
height: 500px;
|
| 62 |
+
overflow: auto;
|
| 63 |
+
border: 1px solid #ccc;
|
| 64 |
+
}
|
| 65 |
+
"""
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
single_task_list =[
|
| 69 |
+
"ScreenQA"
|
| 70 |
+
]
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
with gr.Blocks(css=css) as demo:
|
| 74 |
+
gr.Markdown(DESCRIPTION)
|
| 75 |
+
with gr.Tab(label="Florence-2 Input"):
|
| 76 |
+
with gr.Row():
|
| 77 |
+
with gr.Column():
|
| 78 |
+
input_img = gr.Image(label="Input Picture")
|
| 79 |
+
model_selector = gr.Dropdown(choices=list(models.keys()), label="Model", value="maxiw/Florence-2-ScreenQA-base")
|
| 80 |
+
task_prompt = gr.Dropdown(choices=single_task_list, label="Task Prompt", value="ScreenQA")
|
| 81 |
+
text_input = gr.Textbox(label="Question")
|
| 82 |
+
submit_btn = gr.Button(value="Submit")
|
| 83 |
+
with gr.Column():
|
| 84 |
+
output_text = gr.Textbox(label="Output Text")
|
| 85 |
+
|
| 86 |
+
gr.Examples(
|
| 87 |
+
examples=[
|
| 88 |
+
["image1.jpg", "ScreenQA", "What is the version of the settings?"],
|
| 89 |
+
["image1.jpg", "ScreenQA", "What is the state of use lower resolution images?"],
|
| 90 |
+
["image2.jpg", "ScreenQA", "How much is the discount for the product?"]
|
| 91 |
+
],
|
| 92 |
+
inputs=[input_img, task_prompt, text_input],
|
| 93 |
+
outputs=[output_text],
|
| 94 |
+
fn=process_image,
|
| 95 |
+
cache_examples=True,
|
| 96 |
+
label="Try examples"
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
submit_btn.click(process_image, [input_img, task_prompt, text_input, model_selector], [output_text])
|
| 100 |
+
|
| 101 |
+
demo.launch(debug=True)
|
image1.jpg
ADDED
|
image2.jpg
ADDED
|
pre-requirements.txt
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
pip>=23.0.0
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
spaces
|
| 2 |
+
transformers
|
| 3 |
+
timm
|