Spaces:
Build error
Build error
Abhay Mishra
commited on
Commit
·
b9b440a
1
Parent(s):
1960024
add voice based queries
Browse files- .gitignore +2 -0
- app.py +55 -18
.gitignore
CHANGED
|
@@ -1,3 +1,5 @@
|
|
| 1 |
venv/
|
| 2 |
flagged/
|
| 3 |
**/__pycache__/**
|
|
|
|
|
|
|
|
|
| 1 |
venv/
|
| 2 |
flagged/
|
| 3 |
**/__pycache__/**
|
| 4 |
+
.ipynb_checkpoints/
|
| 5 |
+
.vscode/
|
app.py
CHANGED
|
@@ -1,16 +1,30 @@
|
|
| 1 |
from sentence_transformers import SentenceTransformer
|
| 2 |
import pickle
|
| 3 |
import numpy as np
|
|
|
|
| 4 |
import torch
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
with open("dep_course_title_to_content_embed.pickle", "rb") as handle:
|
| 10 |
loaded_map = pickle.load(handle)
|
| 11 |
|
| 12 |
dep_name_course_name = list(loaded_map.keys())
|
| 13 |
-
deps = list(set([x for (x,y) in dep_name_course_name]))
|
| 14 |
dep_to_course_name = {}
|
| 15 |
dep_to_course_embedding = {}
|
| 16 |
|
|
@@ -21,30 +35,53 @@ for dep in deps:
|
|
| 21 |
for (dep_name, course_name), embedding in loaded_map.items():
|
| 22 |
# print(embedding.shape)
|
| 23 |
dep_to_course_name[dep_name].append(course_name)
|
| 24 |
-
dep_to_course_embedding[dep_name].append(np.array(embedding, dtype
|
| 25 |
|
| 26 |
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
|
| 27 |
|
| 28 |
-
|
|
|
|
| 29 |
if not Department:
|
| 30 |
Department = deps
|
| 31 |
course_titles = []
|
| 32 |
course_content_embeddings = []
|
| 33 |
for dep in Department:
|
| 34 |
-
course_titles +=
|
| 35 |
course_content_embeddings += dep_to_course_embedding[dep]
|
| 36 |
-
course_content_embeddings =
|
|
|
|
|
|
|
|
|
|
| 37 |
embed = model.encode(query)
|
| 38 |
-
result = cos(torch.from_numpy(course_content_embeddings),torch.from_numpy(embed))
|
| 39 |
indices = reversed(np.argsort(result))
|
| 40 |
-
predictions = {course_titles[i]
|
| 41 |
-
return predictions
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from sentence_transformers import SentenceTransformer
|
| 2 |
import pickle
|
| 3 |
import numpy as np
|
| 4 |
+
|
| 5 |
import torch
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
+
import os
|
| 9 |
+
os.system("pip install git+https://github.com/openai/whisper.git")
|
| 10 |
+
import whisper
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
infer_model = whisper.load_model("tiny")
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def infer(audio):
|
| 17 |
+
result = infer_model.transcribe(audio)
|
| 18 |
+
return result["text"]
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
model = SentenceTransformer("paraphrase-MiniLM-L6-v2")
|
| 22 |
|
| 23 |
with open("dep_course_title_to_content_embed.pickle", "rb") as handle:
|
| 24 |
loaded_map = pickle.load(handle)
|
| 25 |
|
| 26 |
dep_name_course_name = list(loaded_map.keys())
|
| 27 |
+
deps = list(set([x for (x, y) in dep_name_course_name]))
|
| 28 |
dep_to_course_name = {}
|
| 29 |
dep_to_course_embedding = {}
|
| 30 |
|
|
|
|
| 35 |
for (dep_name, course_name), embedding in loaded_map.items():
|
| 36 |
# print(embedding.shape)
|
| 37 |
dep_to_course_name[dep_name].append(course_name)
|
| 38 |
+
dep_to_course_embedding[dep_name].append(np.array(embedding, dtype=np.float32))
|
| 39 |
|
| 40 |
cos = torch.nn.CosineSimilarity(dim=1, eps=1e-6)
|
| 41 |
|
| 42 |
+
|
| 43 |
+
def give_best_match(query, audio, Department):
|
| 44 |
if not Department:
|
| 45 |
Department = deps
|
| 46 |
course_titles = []
|
| 47 |
course_content_embeddings = []
|
| 48 |
for dep in Department:
|
| 49 |
+
course_titles += dep_to_course_name[dep]
|
| 50 |
course_content_embeddings += dep_to_course_embedding[dep]
|
| 51 |
+
course_content_embeddings = np.stack(course_content_embeddings)
|
| 52 |
+
|
| 53 |
+
if audio:
|
| 54 |
+
query = infer(audio)
|
| 55 |
embed = model.encode(query)
|
| 56 |
+
result = cos(torch.from_numpy(course_content_embeddings), torch.from_numpy(embed))
|
| 57 |
indices = reversed(np.argsort(result))
|
| 58 |
+
predictions = {course_titles[i]: float(result[i]) for i in indices}
|
| 59 |
+
return query, predictions
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
demo = gr.Interface(
|
| 63 |
+
fn=give_best_match,
|
| 64 |
+
inputs=[
|
| 65 |
+
gr.Textbox(
|
| 66 |
+
label="Describe the course",
|
| 67 |
+
lines=5,
|
| 68 |
+
placeholder="Type anything related to course/s\n\nTitle, Topics/Sub Topics, Refernce books, Questions asked in exams or some random fun stuff.",
|
| 69 |
+
),
|
| 70 |
+
gr.Audio(source="microphone", type="filepath", label = "Don't want to type, Try Describing using your sweet voice!!", interactive= True),
|
| 71 |
+
gr.CheckboxGroup(deps, label="(Optional) Departments"),
|
| 72 |
+
],
|
| 73 |
+
outputs=[
|
| 74 |
+
gr.Textbox(
|
| 75 |
+
label="Query",
|
| 76 |
+
lines=2,
|
| 77 |
+
),
|
| 78 |
+
gr.Label(label="Most Relevant Courses", num_top_classes=5),
|
| 79 |
+
],
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
# demo = gr.Interface(
|
| 84 |
+
# fn=infer, inputs=gr.Audio(source="microphone", type="filepath"), outputs="text"
|
| 85 |
+
# )
|
| 86 |
+
|
| 87 |
+
demo.launch()
|