lucid-hf's picture
CI: deploy Docker/PDM Space
98a3af2 verified
#!/usr/bin/env python3
"""
Convert Stanford Drone dataset to COCO format.
Dataset structure:
/mnt/archive/person_drone/stanford_drone/
β”œβ”€β”€ annotations/
β”‚ β”œβ”€β”€ scene1/
β”‚ β”‚ └── video0/
β”‚ β”‚ β”œβ”€β”€ annotations.txt
β”‚ β”‚ └── reference.jpg
└── video/
β”œβ”€β”€ scene1/
β”‚ └── video0/
β”‚ └── video.mp4
Annotation format: frame_id xmin ymin xmax ymax track_id object_lost occluded generated class_name
- frame_id: Frame number (0-indexed)
- xmin, ymin, xmax, ymax: Bounding box coordinates in pixels
- track_id: Unique track ID for multi-object tracking
- object_lost: 1 if object is lost, 0 otherwise
- occluded: 1 if object is occluded, 0 otherwise
- generated: 1 if bounding box is generated/interpolated, 0 otherwise
- class_name: Object class in quotes (e.g., "Pedestrian", "Biker", "Car", "Cart", "Skater", "Bus")
"""
import json
import os
import argparse
import cv2
import numpy as np
from pathlib import Path
from typing import Dict, List, Tuple, Set
from datetime import datetime
from collections import defaultdict
import random
def get_all_scenes_and_videos(dataset_root: str) -> List[Tuple[str, str]]:
"""Get all scene/video combinations in the dataset."""
annotations_dir = Path(dataset_root) / "annotations"
scene_videos = []
for scene_dir in annotations_dir.iterdir():
if scene_dir.is_dir():
for video_dir in scene_dir.iterdir():
if video_dir.is_dir():
scene_videos.append((scene_dir.name, video_dir.name))
return sorted(scene_videos)
def parse_stanford_annotations(annotation_file: str) -> Dict[int, List[Dict]]:
"""
Parse Stanford Drone annotation file.
Args:
annotation_file: Path to annotations.txt file
Returns:
Dictionary mapping frame_id to list of annotations
"""
frame_annotations = defaultdict(list)
with open(annotation_file, 'r') as f:
for line_num, line in enumerate(f):
line = line.strip()
if not line:
continue
try:
parts = line.split()
if len(parts) < 10:
continue
frame_id = int(parts[0])
xmin = float(parts[1])
ymin = float(parts[2])
xmax = float(parts[3])
ymax = float(parts[4])
track_id = int(parts[5])
object_lost = int(parts[6])
occluded = int(parts[7])
generated = int(parts[8])
class_name = parts[9].strip('"')
# Calculate width and height
width = xmax - xmin
height = ymax - ymin
# Skip invalid bboxes
if width <= 0 or height <= 0:
continue
frame_annotations[frame_id].append({
'bbox': [xmin, ymin, width, height],
'track_id': track_id,
'class_name': class_name,
'object_lost': object_lost,
'occluded': occluded,
'generated': generated
})
except (ValueError, IndexError) as e:
print(f"Warning: Could not parse line {line_num + 1} in {annotation_file}: {line}")
continue
return dict(frame_annotations)
def extract_frames_from_video(video_path: str, output_dir: str, sample_rate: int = 30) -> List[Tuple[int, str]]:
"""
Extract frames from video at specified sample rate.
Args:
video_path: Path to video file
output_dir: Directory to save extracted frames
sample_rate: Extract every Nth frame
Returns:
List of (frame_id, image_path) tuples for successfully extracted frames
"""
output_dir = Path(output_dir)
output_dir.mkdir(parents=True, exist_ok=True)
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(f"Error: Could not open video {video_path}")
return []
extracted_frames = []
frame_id = 0
success = True
while success:
success, frame = cap.read()
if not success:
break
# Sample frames at specified rate
if frame_id % sample_rate == 0:
frame_filename = f"frame_{frame_id:06d}.jpg"
frame_path = output_dir / frame_filename
if cv2.imwrite(str(frame_path), frame):
extracted_frames.append((frame_id, str(frame_path)))
else:
print(f"Warning: Could not save frame {frame_id} to {frame_path}")
frame_id += 1
cap.release()
print(f"Extracted {len(extracted_frames)} frames from {video_path}")
return extracted_frames
def create_train_val_test_splits(scene_videos: List[Tuple[str, str]],
train_ratio: float = 0.7,
val_ratio: float = 0.2,
test_ratio: float = 0.1) -> Dict[str, List[Tuple[str, str]]]:
"""Create train/val/test splits from scene/video combinations."""
random.shuffle(scene_videos)
n_total = len(scene_videos)
n_train = int(n_total * train_ratio)
n_val = int(n_total * val_ratio)
n_test = n_total - n_train - n_val
splits = {
'train': scene_videos[:n_train],
'val': scene_videos[n_train:n_train + n_val],
'test': scene_videos[n_train + n_val:]
}
print(f"Dataset splits: train={len(splits['train'])}, val={len(splits['val'])}, test={len(splits['test'])}")
return splits
def convert_split_to_coco(
dataset_root: str,
scene_videos: List[Tuple[str, str]],
split_name: str,
output_dir: str,
category_mapping: Dict[str, Dict],
sample_rate: int = 30,
start_img_id: int = 1,
start_ann_id: int = 1
) -> Tuple[Dict, int, int]:
"""
Convert a dataset split to COCO format.
Args:
dataset_root: Root directory of Stanford Drone dataset
scene_videos: List of (scene, video) tuples for this split
split_name: Name of the split (train/val/test)
output_dir: Output directory for images and annotations
category_mapping: Mapping of class names to category info
sample_rate: Extract every Nth frame from videos
start_img_id: Starting image ID
start_ann_id: Starting annotation ID
Returns:
COCO format dictionary, next_img_id, next_ann_id
"""
coco_data = {
"info": {
"year": 2024,
"version": "1.0",
"description": f"Stanford Drone Dataset - {split_name} split",
"contributor": "Stanford Drone Dataset",
"url": "http://cvgl.stanford.edu/projects/uav_data/",
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
"licenses": [
{
"id": 1,
"name": "Academic Use",
"url": ""
}
],
"categories": list(category_mapping.values()),
"images": [],
"annotations": []
}
img_id = start_img_id
ann_id = start_ann_id
dataset_root = Path(dataset_root)
output_dir = Path(output_dir)
# Create images directory for this split
images_output_dir = output_dir / f"{split_name}_images"
images_output_dir.mkdir(parents=True, exist_ok=True)
print(f"Processing {len(scene_videos)} scene/video combinations for {split_name} split...")
for scene, video in scene_videos:
print(f"Processing {scene}/{video}...")
# Paths
video_path = dataset_root / "video" / scene / video / "video.mp4"
annotation_file = dataset_root / "annotations" / scene / video / "annotations.txt"
if not video_path.exists() or not annotation_file.exists():
print(f"Warning: Missing video or annotation for {scene}/{video}")
continue
# Parse annotations
frame_annotations = parse_stanford_annotations(str(annotation_file))
# Extract frames
scene_video_dir = images_output_dir / f"{scene}_{video}"
extracted_frames = extract_frames_from_video(str(video_path), str(scene_video_dir), sample_rate)
# Process extracted frames
for frame_id, frame_path in extracted_frames:
# Get frame dimensions
img = cv2.imread(frame_path)
if img is None:
continue
img_height, img_width = img.shape[:2]
# Relative path for COCO annotation
relative_frame_path = Path(frame_path).relative_to(images_output_dir)
# Add image info
coco_data["images"].append({
"id": img_id,
"file_name": str(relative_frame_path),
"width": img_width,
"height": img_height,
"license": 1
})
# Add annotations for this frame
if frame_id in frame_annotations:
for annotation in frame_annotations[frame_id]:
class_name = annotation['class_name']
if class_name not in category_mapping:
continue # Skip unknown classes
bbox = annotation['bbox']
xmin, ymin, width, height = bbox
# Ensure bbox is within image bounds
xmin = max(0, min(xmin, img_width - 1))
ymin = max(0, min(ymin, img_height - 1))
width = min(width, img_width - xmin)
height = min(height, img_height - ymin)
if width <= 0 or height <= 0:
continue
area = width * height
coco_data["annotations"].append({
"id": ann_id,
"image_id": img_id,
"category_id": category_mapping[class_name]["id"],
"bbox": [xmin, ymin, width, height],
"area": area,
"iscrowd": 0,
"segmentation": [],
# Additional Stanford Drone specific fields
"track_id": annotation['track_id'],
"object_lost": annotation['object_lost'],
"occluded": annotation['occluded'],
"generated": annotation['generated']
})
ann_id += 1
img_id += 1
return coco_data, img_id, ann_id
def main():
parser = argparse.ArgumentParser(description="Convert Stanford Drone dataset to COCO format")
parser.add_argument(
"--dataset_root",
type=str,
default="/mnt/archive/person_drone/stanford_drone",
help="Path to Stanford Drone dataset root directory"
)
parser.add_argument(
"--output_dir",
type=str,
default="/home/svakhreev/projects/DEIM/data/stanford_drone_coco",
help="Output directory for COCO format files"
)
parser.add_argument(
"--sample_rate",
type=int,
default=30,
help="Extract every Nth frame from videos (default: 30)"
)
parser.add_argument(
"--train_ratio",
type=float,
default=1.0,
help="Proportion of data for training (default: 0.7)"
)
parser.add_argument(
"--val_ratio",
type=float,
default=0.0,
help="Proportion of data for validation (default: 0.2)"
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for reproducible splits"
)
args = parser.parse_args()
# Set random seed for reproducible splits
random.seed(args.seed)
dataset_root = Path(args.dataset_root)
output_dir = Path(args.output_dir)
# Create output directory
output_dir.mkdir(parents=True, exist_ok=True)
# Get all scene/video combinations
scene_videos = get_all_scenes_and_videos(str(dataset_root))
print(f"Found {len(scene_videos)} scene/video combinations")
# Create category mapping for Stanford Drone classes
class_names = ["Pedestrian", "Biker", "Car", "Cart", "Skater", "Bus"]
category_mapping = {}
for i, name in enumerate(class_names):
category_mapping[name] = {
"id": i + 1, # COCO categories start from 1
"name": name,
"supercategory": "object"
}
print(f"Categories: {category_mapping}")
# Create train/val/test splits
splits = create_train_val_test_splits(
scene_videos,
args.train_ratio,
args.val_ratio,
1.0 - args.train_ratio - args.val_ratio
)
# Process each split
img_id = 1
ann_id = 1
for split_name, split_scene_videos in splits.items():
if not split_scene_videos:
continue
print(f"\nConverting {split_name} split...")
coco_data, next_img_id, next_ann_id = convert_split_to_coco(
str(dataset_root),
split_scene_videos,
split_name,
str(output_dir),
category_mapping,
args.sample_rate,
img_id,
ann_id
)
# Update IDs for next split
img_id = next_img_id
ann_id = next_ann_id
# Save COCO annotation file
output_file = output_dir / f"{split_name}.json"
with open(output_file, 'w') as f:
json.dump(coco_data, f, indent=2)
print(f"Saved {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations to {output_file}")
print(f"\nConversion complete! COCO format files saved in {output_dir}")
# Save split information for reproducibility
splits_file = output_dir / "splits_info.json"
with open(splits_file, 'w') as f:
json.dump({
'splits': splits,
'args': vars(args),
'categories': category_mapping
}, f, indent=2)
print(f"Split information saved to {splits_file}")
if __name__ == "__main__":
main()