Spaces:
Sleeping
Sleeping
File size: 14,857 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 |
#!/usr/bin/env python3
"""
Convert WiSARDv1 (Wildland Search and Rescue Dataset) from YOLO format to COCO format.
Dataset structure:
/mnt/archive/person_drone/WiSARDv1/
βββ [DATE]_[LOCATION]_[SENSOR]_[TYPE]/
β βββ [IMAGE_NAME].jpg
β βββ [IMAGE_NAME].txt (YOLO annotations)
β βββ count.txt (optional statistics)
Where:
- DATE: Format YYMMDD (e.g., 200321)
- LOCATION: Location name (e.g., Baker, Carnation, etc.)
- SENSOR: Sensor type (Phantom, Inspire, Mavic_Mini, FLIR, Enterprise)
- TYPE: VIS (visible/RGB), IR (infrared), or sequence number
YOLO format: class_id center_x center_y width height (normalized 0-1)
COCO format: x y width height (absolute coordinates)
WiSARD is a single-class dataset focused on person detection in search and rescue scenarios.
Class 0 = person (human)
"""
import json
import os
import argparse
from pathlib import Path
from PIL import Image
from typing import Dict, List, Tuple
from datetime import datetime
import re
def get_wisard_categories() -> Dict[int, Dict]:
"""
Get WiSARD category mapping.
WiSARD is a single-class dataset for person detection in search and rescue scenarios.
"""
category_mapping = {
0: {
"id": 1, # COCO categories start from 1
"name": "person",
"supercategory": "person"
}
}
return category_mapping
def parse_sequence_info(sequence_name: str) -> Dict[str, str]:
"""
Parse sequence directory name to extract metadata.
Args:
sequence_name: Directory name like "200321_Baker_Phantom_VIS"
Returns:
Dictionary with parsed metadata
"""
# Extract basic information from sequence name
parts = sequence_name.split('_')
info = {
'sequence_name': sequence_name,
'date': '',
'location': '',
'sensor': '',
'modality': 'unknown'
}
if len(parts) >= 2:
info['date'] = parts[0]
info['location'] = parts[1]
# Determine modality (VIS = RGB, IR = infrared)
if 'VIS' in sequence_name:
info['modality'] = 'rgb'
elif 'IR' in sequence_name:
info['modality'] = 'ir'
# Extract sensor information
for part in parts:
if part in ['Phantom', 'Inspire', 'Mavic', 'FLIR', 'Enterprise']:
info['sensor'] = part
break
return info
def yolo_to_coco_bbox(yolo_bbox: List[float], img_width: int, img_height: int) -> List[float]:
"""
Convert YOLO bbox format to COCO format.
Args:
yolo_bbox: [center_x, center_y, width, height] (normalized 0-1)
img_width: Image width in pixels
img_height: Image height in pixels
Returns:
[x, y, width, height] in absolute coordinates for COCO format
"""
center_x, center_y, width, height = yolo_bbox
# Convert normalized coordinates to absolute
abs_center_x = center_x * img_width
abs_center_y = center_y * img_height
abs_width = width * img_width
abs_height = height * img_height
# Convert center coordinates to top-left corner
x = abs_center_x - abs_width / 2
y = abs_center_y - abs_height / 2
# Ensure coordinates are within image bounds
x = max(0, min(x, img_width - 1))
y = max(0, min(y, img_height - 1))
abs_width = min(abs_width, img_width - x)
abs_height = min(abs_height, img_height - y)
return [x, y, abs_width, abs_height]
def parse_yolo_annotation(label_file: str) -> List[List[float]]:
"""
Parse YOLO annotation file.
Args:
label_file: Path to .txt annotation file
Returns:
List of [class_id, center_x, center_y, width, height] for each detection
"""
annotations = []
if not os.path.exists(label_file):
return annotations
with open(label_file, 'r') as f:
content = f.read().strip()
if not content:
return annotations
lines = content.split('\n')
for line_num, line in enumerate(lines):
line = line.strip()
if not line:
continue
try:
# Parse space-separated values
values = list(map(float, line.split()))
# Each detection has 5 values: class_id, center_x, center_y, width, height
if len(values) != 5:
print(f"Warning: Unexpected format in {label_file} line {line_num + 1}, expected 5 values, got {len(values)}: {line}")
continue
annotations.append(values)
except ValueError as e:
print(f"Warning: Could not parse line {line_num + 1} in {label_file}: {line} - {e}")
continue
return annotations
def convert_sequence_to_coco(
sequence_path: str,
sequence_info: Dict[str, str],
category_mapping: Dict[int, Dict],
start_img_id: int = 1,
start_ann_id: int = 1
) -> Tuple[List[Dict], List[Dict], int, int]:
"""
Convert a WiSARD sequence to COCO format components.
Args:
sequence_path: Path to sequence directory
sequence_info: Parsed sequence metadata
category_mapping: Mapping of class_id to category info
start_img_id: Starting image ID for this sequence
start_ann_id: Starting annotation ID for this sequence
Returns:
images_list, annotations_list, next_img_id, next_ann_id
"""
sequence_path = Path(sequence_path)
if not sequence_path.exists():
print(f"Warning: Sequence path does not exist: {sequence_path}")
return [], [], start_img_id, start_ann_id
images_list = []
annotations_list = []
img_id = start_img_id
ann_id = start_ann_id
# Get all image files
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'}
image_files = []
for ext in image_extensions:
image_files.extend(sequence_path.glob(f"*{ext}"))
image_files.extend(sequence_path.glob(f"*{ext.upper()}"))
image_files = sorted(image_files)
print(f"Processing {len(image_files)} images in sequence {sequence_info['sequence_name']} ({sequence_info['modality']} modality)...")
for img_file in image_files:
# Get corresponding annotation file
label_file = sequence_path / f"{img_file.stem}.txt"
# Open image to get dimensions
try:
with Image.open(img_file) as img:
img_width, img_height = img.size
except Exception as e:
print(f"Error opening image {img_file}: {e}")
continue
# Add image info with sequence prefix to organize and avoid filename conflicts
relative_path = f"{sequence_info['sequence_name']}/{img_file.name}"
images_list.append({
"id": img_id,
"file_name": relative_path,
"width": img_width,
"height": img_height,
"license": 1,
"sequence": sequence_info['sequence_name'],
"modality": sequence_info['modality'],
"location": sequence_info['location'],
"sensor": sequence_info['sensor'],
"date": sequence_info['date']
})
# Parse annotations
yolo_annotations = parse_yolo_annotation(str(label_file))
for yolo_ann in yolo_annotations:
class_id, center_x, center_y, width, height = yolo_ann
class_id = int(class_id)
# Skip unknown classes
if class_id not in category_mapping:
continue
# Convert bbox to COCO format
coco_bbox = yolo_to_coco_bbox([center_x, center_y, width, height], img_width, img_height)
# Calculate area
area = coco_bbox[2] * coco_bbox[3]
if area > 0: # Only add valid annotations
annotations_list.append({
"id": ann_id,
"image_id": img_id,
"category_id": category_mapping[class_id]["id"],
"bbox": coco_bbox,
"area": area,
"iscrowd": 0,
"segmentation": [],
"sequence": sequence_info['sequence_name'],
"modality": sequence_info['modality']
})
ann_id += 1
img_id += 1
return images_list, annotations_list, img_id, ann_id
def get_all_sequences(dataset_root: str) -> List[str]:
"""Get all sequence directories in the dataset."""
dataset_path = Path(dataset_root)
sequences = []
for item in dataset_path.iterdir():
if item.is_dir():
sequences.append(item.name)
return sorted(sequences)
def main():
parser = argparse.ArgumentParser(description="Convert WiSARD v1 dataset to COCO format")
parser.add_argument(
"--dataset_root",
type=str,
default="/mnt/archive/person_drone/WiSARDv1",
help="Path to WiSARD dataset root directory"
)
parser.add_argument(
"--output_dir",
type=str,
default="/home/svakhreev/projects/DEIM/data/wisard_coco",
help="Output directory for COCO format files"
)
parser.add_argument(
"--modalities",
type=str,
nargs='+',
default=["rgb", "ir"],
choices=["rgb", "ir"],
help="Modalities to convert (default: both rgb and ir)"
)
args = parser.parse_args()
dataset_root = Path(args.dataset_root)
output_dir = Path(args.output_dir)
# Create output directory
output_dir.mkdir(parents=True, exist_ok=True)
# Get category mapping
category_mapping = get_wisard_categories()
print(f"Categories: {category_mapping}")
print(f"Converting modalities: {args.modalities}")
# Get all sequences
all_sequences = get_all_sequences(str(dataset_root))
print(f"Found {len(all_sequences)} sequences")
# Filter sequences by modality
sequences_to_process = []
for sequence in all_sequences:
seq_info = parse_sequence_info(sequence)
if seq_info['modality'] in args.modalities:
sequences_to_process.append(sequence)
print(f"Processing {len(sequences_to_process)} sequences matching requested modalities")
# Initialize combined COCO data structure
coco_data = {
"info": {
"year": 2024,
"version": "1.0",
"description": "WiSARD v1 Dataset - Wildland Search and Rescue in COCO format",
"contributor": "WiSARD Dataset",
"url": "https://github.com/castacks/WiSARDdataset",
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
"licenses": [
{
"id": 1,
"name": "Academic Use",
"url": ""
}
],
"categories": list(category_mapping.values()),
"images": [],
"annotations": []
}
# Process each sequence
img_id = 1
ann_id = 1
modality_counts = {"rgb": 0, "ir": 0}
for sequence in sequences_to_process:
sequence_path = dataset_root / sequence
sequence_info = parse_sequence_info(sequence)
if not sequence_path.exists():
print(f"Warning: Sequence path does not exist: {sequence_path}")
continue
print(f"\nConverting sequence: {sequence}")
images_list, annotations_list, next_img_id, next_ann_id = convert_sequence_to_coco(
str(sequence_path),
sequence_info,
category_mapping,
img_id,
ann_id
)
# Add to combined dataset
coco_data["images"].extend(images_list)
coco_data["annotations"].extend(annotations_list)
# Update IDs for next sequence
img_id = next_img_id
ann_id = next_ann_id
# Track modality counts
modality_counts[sequence_info['modality']] += len(images_list)
print(f"Added {len(images_list)} images and {len(annotations_list)} annotations from {sequence}")
# Save unified COCO annotation file
output_file = output_dir / "annotations.json"
with open(output_file, 'w') as f:
json.dump(coco_data, f, indent=2)
print(f"\nConversion complete!")
print(f"Total: {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations")
print(f"Modality distribution: RGB={modality_counts['rgb']}, IR={modality_counts['ir']}")
print(f"Saved unified COCO format to {output_file}")
# Create symlinks to original sequence directories for easy access
symlinks_created = 0
for sequence in sequences_to_process:
original_sequence_dir = dataset_root / sequence
symlink_dir = output_dir / sequence
if original_sequence_dir.exists() and not symlink_dir.exists():
try:
symlink_dir.symlink_to(original_sequence_dir.resolve())
symlinks_created += 1
except Exception as e:
print(f"Warning: Could not create symlink for {sequence}: {e}")
print(f"Created {symlinks_created} symlinks to original sequence directories")
# Save dataset information for reference
info_file = output_dir / "dataset_info.json"
# Group sequences by modality and location for analysis
sequences_by_modality = {"rgb": [], "ir": []}
sequences_by_location = {}
for sequence in sequences_to_process:
seq_info = parse_sequence_info(sequence)
sequences_by_modality[seq_info['modality']].append(sequence)
location = seq_info['location']
if location not in sequences_by_location:
sequences_by_location[location] = []
sequences_by_location[location].append(sequence)
with open(info_file, 'w') as f:
json.dump({
'modalities': args.modalities,
'total_sequences': len(sequences_to_process),
'sequences_by_modality': sequences_by_modality,
'sequences_by_location': sequences_by_location,
'total_images': len(coco_data['images']),
'total_annotations': len(coco_data['annotations']),
'modality_counts': modality_counts,
'categories': category_mapping,
'args': vars(args)
}, f, indent=2)
print(f"Dataset info saved to {info_file}")
print(f"Sequences by location: {dict(sorted(sequences_by_location.items()))}")
if __name__ == "__main__":
main()
|