Spaces:
Sleeping
Sleeping
File size: 11,645 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
#!/usr/bin/env python3
"""
Convert VTSaR dataset from YOLO format to COCO format.
Dataset structure:
/mnt/archive/person_drone/VTSaR/VTSaR_Crop_640/
βββ rgb/
β βββ train/
β βββ val/
βββ ir/
β βββ train/
β βββ val/
βββ labels/
βββ train/
βββ val/
YOLO format: class_id center_x center_y width height (normalized 0-1)
COCO format: x y width height (absolute coordinates)
VTSaR is a single-class dataset for person detection (class 0 = person).
"""
import json
import os
import argparse
from pathlib import Path
from PIL import Image
from typing import Dict, List, Tuple
from datetime import datetime
def yolo_to_coco_bbox(yolo_bbox: List[float], img_width: int, img_height: int) -> List[float]:
"""
Convert YOLO bbox format to COCO format.
Args:
yolo_bbox: [center_x, center_y, width, height] (normalized 0-1)
img_width: Image width in pixels
img_height: Image height in pixels
Returns:
[x, y, width, height] in absolute coordinates for COCO format
"""
center_x, center_y, width, height = yolo_bbox
# Convert normalized coordinates to absolute
abs_center_x = center_x * img_width
abs_center_y = center_y * img_height
abs_width = width * img_width
abs_height = height * img_height
# Convert center coordinates to top-left corner
x = abs_center_x - abs_width / 2
y = abs_center_y - abs_height / 2
# Ensure coordinates are within image bounds
x = max(0, min(x, img_width - 1))
y = max(0, min(y, img_height - 1))
abs_width = min(abs_width, img_width - x)
abs_height = min(abs_height, img_height - y)
return [x, y, abs_width, abs_height]
def parse_yolo_annotation(label_file: str) -> List[List[float]]:
"""
Parse YOLO annotation file.
Args:
label_file: Path to .txt annotation file
Returns:
List of [class_id, center_x, center_y, width, height] for each detection
"""
annotations = []
if not os.path.exists(label_file):
return annotations
with open(label_file, 'r') as f:
content = f.read().strip()
if not content:
return annotations
lines = content.split('\n')
for line_num, line in enumerate(lines):
line = line.strip()
if not line:
continue
try:
# Parse space-separated values
values = list(map(float, line.split()))
# Each detection has 5 values: class_id, center_x, center_y, width, height
if len(values) != 5:
print(f"Warning: Unexpected format in {label_file} line {line_num + 1}, expected 5 values, got {len(values)}: {line}")
continue
annotations.append(values)
except ValueError as e:
print(f"Warning: Could not parse line {line_num + 1} in {label_file}: {line} - {e}")
continue
return annotations
def convert_split_to_coco(
dataset_root: str,
split_name: str,
modality: str,
category_mapping: Dict[int, Dict],
start_img_id: int = 1,
start_ann_id: int = 1
) -> Tuple[List[Dict], List[Dict], int, int]:
"""
Convert a VTSaR dataset split and modality to COCO format components.
Args:
dataset_root: Root directory of VTSaR dataset
split_name: Name of the split (train/val)
modality: Modality to use ('rgb' or 'ir')
category_mapping: Mapping of class_id to category info
start_img_id: Starting image ID for this split
start_ann_id: Starting annotation ID for this split
Returns:
images_list, annotations_list, next_img_id, next_ann_id
"""
dataset_root = Path(dataset_root)
images_dir = dataset_root / modality / split_name
labels_dir = dataset_root / "labels" / split_name
if not images_dir.exists() or not labels_dir.exists():
print(f"Warning: Missing images or labels directory for {split_name} {modality}")
return [], [], start_img_id, start_ann_id
images_list = []
annotations_list = []
img_id = start_img_id
ann_id = start_ann_id
# Get all image files
image_extensions = {'.jpg', '.jpeg', '.png', '.bmp'}
image_files = []
for ext in image_extensions:
image_files.extend(images_dir.glob(f"*{ext}"))
image_files.extend(images_dir.glob(f"*{ext.upper()}"))
image_files = sorted(image_files)
print(f"Processing {len(image_files)} images in {split_name} split ({modality} modality)...")
for img_file in image_files:
# Get corresponding label file
label_file = labels_dir / f"{img_file.stem}.txt"
# Open image to get dimensions
try:
with Image.open(img_file) as img:
img_width, img_height = img.size
except Exception as e:
print(f"Error opening image {img_file}: {e}")
continue
# Add image info with modality prefix to avoid filename conflicts
relative_path = f"{split_name}_{modality}_images/{img_file.name}"
images_list.append({
"id": img_id,
"file_name": relative_path,
"width": img_width,
"height": img_height,
"license": 1,
"modality": modality # Add modality info
})
# Parse annotations
yolo_annotations = parse_yolo_annotation(str(label_file))
for yolo_ann in yolo_annotations:
class_id, center_x, center_y, width, height = yolo_ann
class_id = int(class_id)
# Skip unknown classes
if class_id not in category_mapping:
continue
# Convert bbox to COCO format
coco_bbox = yolo_to_coco_bbox([center_x, center_y, width, height], img_width, img_height)
# Calculate area
area = coco_bbox[2] * coco_bbox[3]
if area > 0: # Only add valid annotations
annotations_list.append({
"id": ann_id,
"image_id": img_id,
"category_id": category_mapping[class_id]["id"],
"bbox": coco_bbox,
"area": area,
"iscrowd": 0,
"segmentation": [],
"modality": modality # Add modality info
})
ann_id += 1
img_id += 1
return images_list, annotations_list, img_id, ann_id
def main():
parser = argparse.ArgumentParser(description="Convert VTSaR dataset to COCO format")
parser.add_argument(
"--dataset_root",
type=str,
default="/mnt/archive/person_drone/VTSaR/VTSaR_Crop_640",
help="Path to VTSaR dataset root directory"
)
parser.add_argument(
"--output_dir",
type=str,
default="/home/svakhreev/projects/DEIM/data/vtsar_coco",
help="Output directory for COCO format files"
)
parser.add_argument(
"--modalities",
type=str,
nargs='+',
default=["rgb", "ir"],
choices=["rgb", "ir"],
help="Modalities to convert (default: both rgb and ir)"
)
args = parser.parse_args()
dataset_root = Path(args.dataset_root)
output_dir = Path(args.output_dir)
# Create output directory
output_dir.mkdir(parents=True, exist_ok=True)
# Create category mapping for VTSaR (single class: person)
category_mapping = {
0: {
"id": 1, # COCO categories start from 1
"name": "person",
"supercategory": "person"
}
}
print(f"Categories: {category_mapping}")
print(f"Converting modalities: {args.modalities}")
# Initialize combined COCO data structure
coco_data = {
"info": {
"year": 2024,
"version": "1.0",
"description": f"VTSaR Dataset - Combined train/val splits (RGB+IR modalities) in COCO format",
"contributor": "VTSaR Dataset",
"url": "",
"date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
},
"licenses": [
{
"id": 1,
"name": "Academic Use",
"url": ""
}
],
"categories": list(category_mapping.values()),
"images": [],
"annotations": []
}
# Process each split and modality combination
splits = ["train", "val"]
img_id = 1
ann_id = 1
for split in splits:
print(f"\nConverting {split} split...")
for modality in args.modalities:
split_images_dir = dataset_root / modality / split
if not split_images_dir.exists():
print(f"Warning: {split_images_dir} does not exist, skipping {split} {modality}")
continue
images_list, annotations_list, next_img_id, next_ann_id = convert_split_to_coco(
str(dataset_root),
split,
modality,
category_mapping,
img_id,
ann_id
)
# Add to combined dataset
coco_data["images"].extend(images_list)
coco_data["annotations"].extend(annotations_list)
# Update IDs for next modality/split
img_id = next_img_id
ann_id = next_ann_id
print(f"Added {len(images_list)} images and {len(annotations_list)} annotations from {split} {modality}")
# Save unified COCO annotation file
output_file = output_dir / "annotations.json"
with open(output_file, 'w') as f:
json.dump(coco_data, f, indent=2)
print(f"\nConversion complete!")
print(f"Total: {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations")
print(f"Saved unified COCO format to {output_file}")
# Create symlinks to original image directories for easy access
for split in splits:
for modality in args.modalities:
original_images_dir = dataset_root / modality / split
symlink_dir = output_dir / f"{split}_{modality}_images"
if original_images_dir.exists() and not symlink_dir.exists():
try:
symlink_dir.symlink_to(original_images_dir.resolve())
print(f"Created symlink: {symlink_dir} -> {original_images_dir}")
except Exception as e:
print(f"Warning: Could not create symlink for {split} {modality}: {e}")
# Save dataset information for reference
info_file = output_dir / "dataset_info.json"
with open(info_file, 'w') as f:
json.dump({
'modalities': args.modalities,
'splits_processed': [(split, modality) for split in splits for modality in args.modalities
if (dataset_root / modality / split).exists()],
'total_images': len(coco_data['images']),
'total_annotations': len(coco_data['annotations']),
'categories': category_mapping,
'args': vars(args)
}, f, indent=2)
print(f"Dataset info saved to {info_file}")
if __name__ == "__main__":
main()
|