Spaces:
Sleeping
Sleeping
File size: 12,348 Bytes
98a3af2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 |
#!/usr/bin/env python3
"""
Script to split COCO formatted dataset into train and validation sets.
This script:
- Loads the existing train.json from /media/fast/drone_train/drone_ds
- Creates a validation set with 3000 images:
- 1500 images from drone datasets (equally distributed)
- 1500 images from objects365
- Saves the validation annotations as val.json
- Updates train.json to exclude validation images
"""
import json
import random
from pathlib import Path
from collections import defaultdict
from typing import Dict, List, Set, Tuple
import logging
from tqdm import tqdm
import shutil
from datetime import datetime
# Setup logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
class TrainValSplitter:
def __init__(self, data_dir: str, val_size: int = 3000, seed: int = 42):
"""
Initialize the train/validation splitter.
Args:
data_dir: Path to the dataset directory containing train.json
val_size: Total number of images for validation set
seed: Random seed for reproducibility
"""
self.data_dir = Path(data_dir)
self.train_json_path = self.data_dir / "train.json"
self.val_json_path = self.data_dir / "val.json"
self.val_size = val_size
self.seed = seed
# Define drone datasets based on coco_dataset.py
self.drone_datasets = [
"rgbt_drone_person",
"search_and_rescue",
"stanford_drone",
"visdrone2019",
"vtsar",
"vtuav",
"wisard"
]
# Set random seed for reproducibility
random.seed(seed)
# Data structures
self.data = None
self.images_by_dataset = defaultdict(list)
self.image_id_to_annotations = defaultdict(list)
def load_data(self):
"""Load the original train.json file."""
logger.info(f"Loading data from {self.train_json_path}")
if not self.train_json_path.exists():
raise FileNotFoundError(f"Train file not found: {self.train_json_path}")
with open(self.train_json_path, 'r') as f:
self.data = json.load(f)
logger.info(f"Loaded {len(self.data['images'])} images and {len(self.data['annotations'])} annotations")
def organize_data(self):
"""Organize images by dataset and create annotation mappings."""
logger.info("Organizing data by dataset...")
# Group images by dataset
for img in tqdm(self.data['images'], desc="Grouping images"):
dataset = img.get('dataset', 'unknown')
self.images_by_dataset[dataset].append(img)
# Map annotations to images
for ann in tqdm(self.data['annotations'], desc="Mapping annotations"):
self.image_id_to_annotations[ann['image_id']].append(ann)
# Print statistics
logger.info("\nDataset statistics:")
for dataset, images in sorted(self.images_by_dataset.items()):
logger.info(f" {dataset}: {len(images)} images")
def select_validation_images(self) -> Tuple[Set[int], Dict[str, List[int]]]:
"""
Select images for validation set according to the rules.
Returns:
Tuple of (set of validation image IDs, dict of dataset to selected image IDs)
"""
val_image_ids = set()
val_images_by_dataset = defaultdict(list)
# Calculate how many images to take from each drone dataset
drone_val_total = self.val_size // 2 # 1500
num_drone_datasets = len(self.drone_datasets)
images_per_drone = drone_val_total // num_drone_datasets # ~214
logger.info(f"\nSelecting validation images:")
logger.info(f" Total validation size: {self.val_size}")
logger.info(f" Drone datasets allocation: {drone_val_total} images")
logger.info(f" Objects365 allocation: {self.val_size - drone_val_total} images")
logger.info(f" Images per drone dataset: ~{images_per_drone}")
# Select from drone datasets
drone_selected_total = 0
for dataset in self.drone_datasets:
if dataset not in self.images_by_dataset:
logger.warning(f" Dataset '{dataset}' not found in data")
continue
available_images = self.images_by_dataset[dataset]
num_to_select = min(images_per_drone, len(available_images))
if num_to_select < images_per_drone:
logger.warning(f" {dataset}: only {len(available_images)} images available, selecting all")
selected = random.sample(available_images, num_to_select)
for img in selected:
val_image_ids.add(img['id'])
val_images_by_dataset[dataset].append(img['id'])
drone_selected_total += num_to_select
logger.info(f" {dataset}: selected {num_to_select} images")
# Adjust objects365 selection based on actual drone selection
objects365_needed = self.val_size - drone_selected_total
# Select from objects365
if 'objects365' in self.images_by_dataset:
available_objects365 = self.images_by_dataset['objects365']
num_to_select = min(objects365_needed, len(available_objects365))
selected = random.sample(available_objects365, num_to_select)
for img in selected:
val_image_ids.add(img['id'])
val_images_by_dataset['objects365'].append(img['id'])
logger.info(f" objects365: selected {num_to_select} images")
else:
logger.warning(" objects365 dataset not found")
logger.info(f"\nTotal validation images selected: {len(val_image_ids)}")
return val_image_ids, val_images_by_dataset
def split_data(self, val_image_ids: Set[int]) -> Tuple[Dict, Dict]:
"""
Split the data into train and validation sets.
Args:
val_image_ids: Set of image IDs selected for validation
Returns:
Tuple of (train_data, val_data) dictionaries
"""
logger.info("\nSplitting data into train and validation sets...")
# Initialize train and val data structures
train_data = {
"info": self.data.get("info", {}),
"licenses": self.data.get("licenses", []),
"categories": self.data.get("categories", []),
"images": [],
"annotations": []
}
val_data = {
"info": self.data.get("info", {}),
"licenses": self.data.get("licenses", []),
"categories": self.data.get("categories", []),
"images": [],
"annotations": []
}
# Split images
for img in tqdm(self.data['images'], desc="Splitting images"):
if img['id'] in val_image_ids:
val_data['images'].append(img)
else:
train_data['images'].append(img)
# Split annotations
for ann in tqdm(self.data['annotations'], desc="Splitting annotations"):
if ann['image_id'] in val_image_ids:
val_data['annotations'].append(ann)
else:
train_data['annotations'].append(ann)
logger.info(f"Train set: {len(train_data['images'])} images, {len(train_data['annotations'])} annotations")
logger.info(f"Val set: {len(val_data['images'])} images, {len(val_data['annotations'])} annotations")
return train_data, val_data
def save_splits(self, train_data: Dict, val_data: Dict, backup: bool = True):
"""
Save the train and validation splits to JSON files.
Args:
train_data: Training data dictionary
val_data: Validation data dictionary
backup: Whether to create a backup of the original train.json
"""
# Create backup of original train.json if requested
if backup and self.train_json_path.exists():
backup_path = self.train_json_path.with_suffix(f'.backup_{datetime.now().strftime("%Y%m%d_%H%M%S")}.json')
logger.info(f"Creating backup: {backup_path}")
shutil.copy2(self.train_json_path, backup_path)
# Save validation set
logger.info(f"Saving validation set to {self.val_json_path}")
with open(self.val_json_path, 'w') as f:
json.dump(val_data, f)
# Save updated training set
logger.info(f"Saving updated training set to {self.train_json_path}")
with open(self.train_json_path, 'w') as f:
json.dump(train_data, f)
logger.info("Split completed successfully!")
def print_statistics(self, val_images_by_dataset: Dict[str, List[int]]):
"""Print detailed statistics about the split."""
logger.info("\n" + "="*60)
logger.info("VALIDATION SET STATISTICS")
logger.info("="*60)
total_val_images = sum(len(ids) for ids in val_images_by_dataset.values())
# Drone datasets statistics
drone_total = 0
logger.info("\nDrone Datasets:")
for dataset in self.drone_datasets:
if dataset in val_images_by_dataset:
count = len(val_images_by_dataset[dataset])
drone_total += count
percentage = (count / total_val_images) * 100
logger.info(f" {dataset:20s}: {count:5d} images ({percentage:5.2f}%)")
logger.info(f"\nTotal Drone Images: {drone_total} ({(drone_total/total_val_images)*100:.1f}%)")
# Objects365 statistics
if 'objects365' in val_images_by_dataset:
obj365_count = len(val_images_by_dataset['objects365'])
logger.info(f"Objects365 Images: {obj365_count} ({(obj365_count/total_val_images)*100:.1f}%)")
logger.info(f"\nTotal Validation Images: {total_val_images}")
logger.info("="*60)
def run(self):
"""Execute the train/validation split."""
logger.info("Starting train/validation split...")
logger.info(f"Random seed: {self.seed}")
# Load data
self.load_data()
# Organize data
self.organize_data()
# Select validation images
val_image_ids, val_images_by_dataset = self.select_validation_images()
# Print statistics
self.print_statistics(val_images_by_dataset)
# Split data
train_data, val_data = self.split_data(val_image_ids)
# Save splits
self.save_splits(train_data, val_data, backup=True)
logger.info("\nProcess completed successfully!")
def main():
"""Main function to execute the train/validation split."""
import argparse
parser = argparse.ArgumentParser(
description="Split COCO dataset into train and validation sets"
)
parser.add_argument(
"--data-dir",
type=str,
default="/media/fast/drone_train/drone_ds",
help="Path to dataset directory containing train.json"
)
parser.add_argument(
"--val-size",
type=int,
default=3000,
help="Number of images for validation set"
)
parser.add_argument(
"--seed",
type=int,
default=42,
help="Random seed for reproducibility"
)
parser.add_argument(
"--no-backup",
action="store_true",
help="Don't create backup of original train.json"
)
args = parser.parse_args()
# Create splitter and run
splitter = TrainValSplitter(
data_dir=args.data_dir,
val_size=args.val_size,
seed=args.seed
)
try:
splitter.run()
except Exception as e:
logger.error(f"Error during split: {e}")
raise
if __name__ == "__main__":
main()
|