File size: 13,315 Bytes
98a3af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
#!/usr/bin/env python3
"""
Convert CrowdHuman dataset from ODGT format to COCO format.

Dataset structure:
/mnt/archive/person_drone/crowd_human/
β”œβ”€β”€ annotation_train.odgt
β”œβ”€β”€ annotation_val.odgt
β”œβ”€β”€ CrowdHuman_train/
β”‚   └── Images/
β”œβ”€β”€ CrowdHuman_val/
β”‚   └── Images/
└── CrowdHuman_test/
    └── Images/

ODGT format: One Dict per line in JSON format with:
- fbox: full body bounding box [x, y, width, height]
- vbox: visible body bounding box [x, y, width, height]
- hbox: head bounding box [x, y, width, height]

We use fbox (full body) for normal person bboxes as requested.
"""

import json
import os
import argparse
from pathlib import Path
from PIL import Image
from typing import Dict, List, Tuple
from datetime import datetime


def parse_odgt_file(odgt_path: str) -> List[Dict]:
    """
    Parse ODGT (One Dict per line) annotation file.
    
    Args:
        odgt_path: Path to .odgt annotation file
    
    Returns:
        List of annotation dictionaries
    """
    annotations = []
    
    if not os.path.exists(odgt_path):
        print(f"Warning: Annotation file {odgt_path} does not exist")
        return annotations
    
    with open(odgt_path, 'r') as f:
        for line_num, line in enumerate(f):
            line = line.strip()
            if not line:
                continue
            
            try:
                annotation = json.loads(line)
                annotations.append(annotation)
            except json.JSONDecodeError as e:
                print(f"Warning: Could not parse line {line_num + 1} in {odgt_path}: {e}")
                continue
    
    return annotations


def convert_split_to_coco(
    dataset_root: str,
    split_name: str,
    annotations_data: List[Dict],
    category_mapping: Dict[str, Dict],
    start_img_id: int = 1,
    start_ann_id: int = 1
) -> Tuple[List[Dict], List[Dict], int, int]:
    """
    Convert a CrowdHuman dataset split to COCO format components.
    
    Args:
        dataset_root: Root directory of CrowdHuman dataset
        split_name: Name of the split (train/val/test)
        annotations_data: Parsed ODGT annotations for this split
        category_mapping: Mapping of tag to category info
        start_img_id: Starting image ID for this split
        start_ann_id: Starting annotation ID for this split
    
    Returns:
        images_list, annotations_list, next_img_id, next_ann_id
    """
    dataset_root = Path(dataset_root)
    images_dir = dataset_root / f"CrowdHuman_{split_name}" / "Images"
    
    if not images_dir.exists():
        print(f"Warning: Images directory {images_dir} does not exist")
        return [], [], start_img_id, start_ann_id
    
    images_list = []
    annotations_list = []
    img_id = start_img_id
    ann_id = start_ann_id
    
    print(f"Processing {len(annotations_data)} images in {split_name} split...")
    
    # Create a mapping from image ID to sequential ID
    image_id_mapping = {}
    
    for ann_data in annotations_data:
        image_filename = f"{ann_data['ID']}.jpg"
        image_path = images_dir / image_filename
        
        # Check if image exists
        if not image_path.exists():
            print(f"Warning: Image {image_path} not found, skipping...")
            continue
        
        # Get image dimensions
        try:
            with Image.open(image_path) as img:
                img_width, img_height = img.size
        except Exception as e:
            print(f"Error opening image {image_path}: {e}")
            continue
        
        # Map original ID to sequential ID
        image_id_mapping[ann_data['ID']] = img_id
        
        # Add image info
        images_list.append({
            "id": img_id,
            "file_name": f"CrowdHuman_{split_name}/Images/{image_filename}",
            "width": img_width,
            "height": img_height,
            "license": 1
        })
        
        # Process ground truth boxes
        if 'gtboxes' in ann_data:
            for gt_box in ann_data['gtboxes']:
                # Skip if not a person
                if gt_box.get('tag') != 'person':
                    continue
                
                # Skip ignored boxes
                if 'head_attr' in gt_box and gt_box['head_attr'].get('ignore', 0) == 1:
                    continue
                
                # Use fbox (full body box) as requested
                if 'fbox' not in gt_box:
                    continue
                
                fbox = gt_box['fbox']
                # fbox format is already [x, y, width, height]
                x, y, width, height = fbox
                
                # Ensure coordinates are within image bounds
                x = max(0, min(x, img_width - 1))
                y = max(0, min(y, img_height - 1))
                width = min(width, img_width - x)
                height = min(height, img_height - y)
                
                # Calculate area
                area = width * height
                
                if area > 0:  # Only add valid annotations
                    # Determine if crowded (occluded)
                    is_crowd = 0
                    if 'extra' in gt_box:
                        # occ: 0 = no occlusion, 1 = partial occlusion, 2 = heavy occlusion
                        occ_level = gt_box['extra'].get('occ', 0)
                        # Consider heavy occlusion as crowd
                        is_crowd = 1 if occ_level >= 2 else 0
                    
                    annotations_list.append({
                        "id": ann_id,
                        "image_id": img_id,
                        "category_id": category_mapping['person']["id"],
                        "bbox": [x, y, width, height],
                        "area": area,
                        "iscrowd": is_crowd,
                        "segmentation": []
                    })
                    ann_id += 1
        
        img_id += 1
    
    return images_list, annotations_list, img_id, ann_id


def main():
    parser = argparse.ArgumentParser(description="Convert CrowdHuman dataset to COCO format")
    parser.add_argument(
        "--dataset_root",
        type=str,
        default="/mnt/archive/person_drone/crowd_human",
        help="Path to CrowdHuman dataset root directory"
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="/home/svakhreev/projects/DEIM/data/crowd_human_coco",
        help="Output directory for COCO format files"
    )
    parser.add_argument(
        "--splits",
        type=str,
        nargs='+',
        default=["train", "val"],
        choices=["train", "val", "test"],
        help="Splits to convert (default: train and val)"
    )
    
    args = parser.parse_args()
    
    dataset_root = Path(args.dataset_root)
    output_dir = Path(args.output_dir)
    
    # Create output directory
    output_dir.mkdir(parents=True, exist_ok=True)
    
    # Create category mapping for CrowdHuman (single class: person)
    category_mapping = {
        'person': {
            "id": 1,  # COCO categories start from 1
            "name": "person",
            "supercategory": "person"
        }
    }
    
    print(f"Categories: {category_mapping}")
    print(f"Converting splits: {args.splits}")
    
    # Process each split separately
    for split in args.splits:
        print(f"\n{'='*60}")
        print(f"Converting {split} split...")
        print(f"{'='*60}")
        
        # Initialize COCO data structure for this split
        coco_data = {
            "info": {
                "year": 2024,
                "version": "1.0",
                "description": f"CrowdHuman Dataset - {split} split in COCO format",
                "contributor": "CrowdHuman Dataset",
                "url": "https://www.crowdhuman.org/",
                "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            },
            "licenses": [
                {
                    "id": 1,
                    "name": "Academic Use",
                    "url": ""
                }
            ],
            "categories": list(category_mapping.values()),
            "images": [],
            "annotations": []
        }
        
        # Load annotations for this split
        if split == "test":
            # Test split might not have annotations
            print(f"Warning: Test split typically doesn't have annotations")
            annotation_file = dataset_root / f"annotation_{split}.odgt"
            if not annotation_file.exists():
                print(f"No annotation file found for test split, skipping...")
                continue
        else:
            annotation_file = dataset_root / f"annotation_{split}.odgt"
        
        if not annotation_file.exists():
            print(f"Warning: Annotation file {annotation_file} not found, skipping {split}")
            continue
        
        # Parse ODGT annotations
        print(f"Loading annotations from {annotation_file}...")
        annotations_data = parse_odgt_file(str(annotation_file))
        print(f"Loaded {len(annotations_data)} image annotations")
        
        # Convert to COCO format
        images_list, annotations_list, _, _ = convert_split_to_coco(
            str(dataset_root),
            split,
            annotations_data,
            category_mapping,
            start_img_id=1,
            start_ann_id=1
        )
        
        # Add to COCO dataset
        coco_data["images"] = images_list
        coco_data["annotations"] = annotations_list
        
        # Save COCO annotation file for this split
        output_file = output_dir / f"annotations_{split}.json"
        with open(output_file, 'w') as f:
            json.dump(coco_data, f, indent=2)
        
        print(f"\nSplit {split} complete!")
        print(f"Total: {len(coco_data['images'])} images and {len(coco_data['annotations'])} annotations")
        print(f"Saved COCO format to {output_file}")
    
    # Also create a combined annotation file for all splits
    if len(args.splits) > 1:
        print(f"\n{'='*60}")
        print(f"Creating combined annotation file...")
        print(f"{'='*60}")
        
        combined_coco_data = {
            "info": {
                "year": 2024,
                "version": "1.0",
                "description": f"CrowdHuman Dataset - Combined splits ({', '.join(args.splits)}) in COCO format",
                "contributor": "CrowdHuman Dataset",
                "url": "https://www.crowdhuman.org/",
                "date_created": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
            },
            "licenses": [
                {
                    "id": 1,
                    "name": "Academic Use",
                    "url": ""
                }
            ],
            "categories": list(category_mapping.values()),
            "images": [],
            "annotations": []
        }
        
        img_id = 1
        ann_id = 1
        
        for split in args.splits:
            annotation_file = dataset_root / f"annotation_{split}.odgt"
            if not annotation_file.exists():
                continue
            
            print(f"Processing {split} for combined file...")
            annotations_data = parse_odgt_file(str(annotation_file))
            
            images_list, annotations_list, next_img_id, next_ann_id = convert_split_to_coco(
                str(dataset_root),
                split,
                annotations_data,
                category_mapping,
                start_img_id=img_id,
                start_ann_id=ann_id
            )
            
            combined_coco_data["images"].extend(images_list)
            combined_coco_data["annotations"].extend(annotations_list)
            
            img_id = next_img_id
            ann_id = next_ann_id
        
        # Save combined annotation file
        output_file = output_dir / "annotations_combined.json"
        with open(output_file, 'w') as f:
            json.dump(combined_coco_data, f, indent=2)
        
        print(f"\nCombined file complete!")
        print(f"Total: {len(combined_coco_data['images'])} images and {len(combined_coco_data['annotations'])} annotations")
        print(f"Saved combined COCO format to {output_file}")
    
    # Save dataset information for reference
    info_file = output_dir / "dataset_info.json"
    with open(info_file, 'w') as f:
        json.dump({
            'splits_processed': args.splits,
            'total_images_per_split': {
                split: len(json.load(open(output_dir / f"annotations_{split}.json"))['images'])
                for split in args.splits
                if (output_dir / f"annotations_{split}.json").exists()
            },
            'total_annotations_per_split': {
                split: len(json.load(open(output_dir / f"annotations_{split}.json"))['annotations'])
                for split in args.splits
                if (output_dir / f"annotations_{split}.json").exists()
            },
            'categories': category_mapping,
            'args': vars(args)
        }, f, indent=2)
    
    print(f"\nDataset info saved to {info_file}")
    print("\nConversion complete!")


if __name__ == "__main__":
    main()