File size: 75,198 Bytes
98a3af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
#!/usr/bin/env python3
"""
Script to combine multiple drone/person detection datasets into a single COCO format dataset.
All person-related categories are merged into a single "person" category.
"""

import json
import os
import shutil
from pathlib import Path
from typing import Dict, List, Any, Tuple
from collections import defaultdict
import logging
from tqdm import tqdm
import argparse
import cv2
import numpy as np
import random

# Setup logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)

class DatasetCombiner:
    def __init__(self, output_dir: str, dry_run: bool = False, images_per_folder: int = 10000):
        self.output_dir = Path(output_dir)
        self.images_dir = self.output_dir / "images"
        self.annotations_file = self.output_dir / "annotations.json"
        self.dry_run = dry_run
        self.images_per_folder = images_per_folder
        
        if self.dry_run:
            logger.info("🔍 DRY RUN MODE - No files will be copied")
        
        # Create output directories
        self.output_dir.mkdir(parents=True, exist_ok=True)
        if not self.dry_run:
            self.images_dir.mkdir(exist_ok=True)
        
        # Initialize COCO format structure
        self.combined_data = {
            "info": {
                "description": "Combined Person Detection Dataset from Multiple Drone Datasets",
                "version": "1.0",
                "year": 2024
            },
            "licenses": [],
            "categories": [
                {"id": 0, "name": "person", "supercategory": "person"},
                {"id": 1, "name": "ignore", "supercategory": "ignore"}
            ],
            "images": [],
            "annotations": []
        }
        
        # Tracking
        self.image_id_counter = 0
        self.annotation_id_counter = 0
        self.image_filename_mapping = {}  # old_path -> new_filename
        self.stats = defaultdict(lambda: {
            "total_images": 0,
            "total_annotations": 0,
            "images_with_persons": 0,
            "crowd_annotations": 0,
            "ignore_annotations": 0,
            "modalities": set(),
            "splits": set(),
            "missing_images": 0
        })
        
    def is_person_category(self, category_name: str) -> bool:
        """Check if a category name refers to a person."""
        person_keywords = [
            'person', 'people', 'pedestrian', 'human', 'crowd', 
            'rider', 'biker', 'skater', 'swimmer'
        ]
        name_lower = category_name.lower()
        return any(keyword in name_lower for keyword in person_keywords)
    
    def is_crowd_category(self, category_name: str) -> bool:
        """Check if a category should be marked as crowd."""
        crowd_keywords = ['crowd', 'people', 'group']
        return any(keyword in category_name.lower() for keyword in crowd_keywords)
    
    def get_new_image_path(self, dataset_name: str, original_filename: str, image_id: int) -> Tuple[str, Path]:
        """Generate a new unique filename with pagination folder structure.
        
        Returns:
            Tuple of (relative_path_for_json, full_destination_path)
        """
        ext = Path(original_filename).suffix
        
        # Calculate folder number (0-based, but display as 1-based)
        folder_num = image_id // self.images_per_folder
        folder_name = f"{folder_num:07d}"  # 0000000, 0000001, etc.
        
        # Create filename
        filename = f"{dataset_name}_{image_id:08d}{ext}"
        
        # Relative path for JSON (images/0000001/filename.jpg)
        relative_path = f"{folder_name}/{filename}"
        
        # Full destination path
        folder_path = self.images_dir / folder_name
        if not self.dry_run:
            folder_path.mkdir(parents=True, exist_ok=True)
        
        full_path = folder_path / filename
        
        return relative_path, full_path
    
    def copy_image(self, source_path: Path, dest_path: Path) -> bool:
        """Copy image to the combined dataset directory."""
        if self.dry_run:
            # In dry run, just check if source exists
            if source_path.exists():
                return True
            else:
                logger.warning(f"Source image not found: {source_path}")
                return False
        
        try:
            if source_path.exists():
                shutil.copy2(source_path, dest_path)
                return True
            else:
                logger.warning(f"Source image not found: {source_path}")
                return False
        except Exception as e:
            logger.error(f"Error copying image {source_path}: {e}")
            return False
    
    def process_rgbt_drone_person(self):
        """Process RGBTDronePerson dataset."""
        dataset_name = "rgbt_drone_person"
        base_path = Path("/mnt/archive/person_drone/RGBTDronePerson-20250828T031729Z-1-001/RGBTDronePerson")
        
        annotation_files = [
            ("train_thermal.json", "train", "thermal"),
            ("val_thermal.json", "val", "thermal"),
            ("sub_train_thermal.json", "sub_train", "thermal"),
            ("sub_train_visible.json", "sub_train", "visible")
        ]
        
        for ann_file, split, modality in annotation_files:
            ann_path = base_path / ann_file
            if not ann_path.exists():
                logger.warning(f"Annotation file not found: {ann_path}")
                continue
                
            logger.info(f"Processing {dataset_name} - {split} - {modality}")
            
            with open(ann_path, 'r') as f:
                data = json.load(f)
            
            # Map category IDs
            category_mapping = {}
            for cat in data.get('categories', []):
                if self.is_person_category(cat['name']):
                    category_mapping[cat['id']] = 0
            
            # Process images and annotations
            image_id_mapping = {}
            images_with_persons = set()
            
            # First pass: identify images with person annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] in category_mapping:
                    images_with_persons.add(ann['image_id'])
            
            # Process ALL images (drone dataset - keep all images)
            for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} {split} {modality} images"):
                
                old_id = img['id']
                new_id = self.image_id_counter
                self.image_id_counter += 1
                image_id_mapping[old_id] = new_id
                
                # Determine image path based on split and modality
                img_filename = img['file_name']
                # RGBTDronePerson has structure: RGBTDronePerson/{split}/{modality}/{filename}
                if split == "sub_train":
                    # sub_train doesn't have its own folder, uses train folder
                    source_path = base_path / "RGBTDronePerson" / "train" / modality / img_filename
                else:
                    source_path = base_path / "RGBTDronePerson" / split / modality / img_filename
                
                relative_path, dest_path = self.get_new_image_path(dataset_name, img_filename, new_id)
                
                if not source_path.exists():
                    self.stats[dataset_name]["missing_images"] += 1
                    if not self.dry_run:
                        continue
                
                if self.copy_image(source_path, dest_path):
                    new_img = {
                        "id": new_id,
                        "file_name": relative_path,
                        "width": img.get('width', 0),
                        "height": img.get('height', 0),
                        "dataset": dataset_name,
                        "split": split,
                        "modality": modality,
                        "original_filename": img_filename
                    }
                    self.combined_data['images'].append(new_img)
                    self.stats[dataset_name]["total_images"] += 1
                    if old_id in images_with_persons:
                        self.stats[dataset_name]["images_with_persons"] += 1
                    self.stats[dataset_name]["modalities"].add(modality)
                    self.stats[dataset_name]["splits"].add(split)
            
            # Process annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] not in category_mapping:
                    continue
                if ann['image_id'] not in image_id_mapping:
                    continue
                
                old_cat_name = next((c['name'] for c in data['categories'] if c['id'] == ann['category_id']), '')
                is_crowd = self.is_crowd_category(old_cat_name) or ann.get('iscrowd', 0) == 1
                
                # Crowd annotations go to ignore category
                new_ann = {
                    "id": self.annotation_id_counter,
                    "image_id": image_id_mapping[ann['image_id']],
                    "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                    "bbox": ann['bbox'],
                    "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                    "segmentation": ann.get('segmentation', []),
                    "iscrowd": 1 if is_crowd else 0
                }
                self.combined_data['annotations'].append(new_ann)
                self.annotation_id_counter += 1
                self.stats[dataset_name]["total_annotations"] += 1
                if is_crowd:
                    self.stats[dataset_name]["crowd_annotations"] += 1
                    self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_search_and_rescue(self):
        """Process Search and Rescue dataset."""
        dataset_name = "search_and_rescue"
        base_path = Path("/mnt/archive/person_drone/search-and-rescue")
        
        splits = ["train", "valid", "test"]
        
        for split in splits:
            ann_path = base_path / f"{split}.json"
            if not ann_path.exists():
                logger.warning(f"Annotation file not found: {ann_path}")
                continue
            
            logger.info(f"Processing {dataset_name} - {split}")
            
            with open(ann_path, 'r') as f:
                data = json.load(f)
            
            # Map category IDs (human -> person)
            category_mapping = {}
            for cat in data.get('categories', []):
                if self.is_person_category(cat['name']):
                    category_mapping[cat['id']] = 0
            
            # Process images and annotations
            image_id_mapping = {}
            images_with_persons = set()
            
            # First pass: identify images with person annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] in category_mapping:
                    images_with_persons.add(ann['image_id'])
            
            # Process ALL images (drone dataset - keep all images)
            for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} {split} images"):
                
                old_id = img['id']
                new_id = self.image_id_counter
                self.image_id_counter += 1
                image_id_mapping[old_id] = new_id
                
                img_filename = img['file_name']
                # Search and rescue has images in train/images, valid/images, test/images folders
                source_path = base_path / split / "images" / img_filename
                
                relative_path, dest_path = self.get_new_image_path(dataset_name, img_filename, new_id)
                
                if self.copy_image(source_path, dest_path):
                    new_img = {
                        "id": new_id,
                        "file_name": relative_path,
                        "width": img.get('width', 0),
                        "height": img.get('height', 0),
                        "dataset": dataset_name,
                        "split": split,
                        "original_filename": img_filename
                    }
                    self.combined_data['images'].append(new_img)
                    self.stats[dataset_name]["total_images"] += 1
                    if old_id in images_with_persons:
                        self.stats[dataset_name]["images_with_persons"] += 1
                    self.stats[dataset_name]["splits"].add(split)
            
            # Process annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] not in category_mapping:
                    continue
                if ann['image_id'] not in image_id_mapping:
                    continue
                
                is_crowd = ann.get('iscrowd', 0) == 1
                
                new_ann = {
                    "id": self.annotation_id_counter,
                    "image_id": image_id_mapping[ann['image_id']],
                    "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                    "bbox": ann['bbox'],
                    "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                    "segmentation": ann.get('segmentation', []),
                    "iscrowd": ann.get('iscrowd', 0)
                }
                self.combined_data['annotations'].append(new_ann)
                self.annotation_id_counter += 1
                self.stats[dataset_name]["total_annotations"] += 1
                if is_crowd:
                    self.stats[dataset_name]["crowd_annotations"] += 1
                    self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_stanford_drone(self):
        """Process Stanford Drone dataset."""
        dataset_name = "stanford_drone"
        base_path = Path("/mnt/archive/person_drone/stanford_drone_coco")
        
        ann_path = base_path / "train.json"
        if not ann_path.exists():
            logger.warning(f"Annotation file not found: {ann_path}")
            return
        
        logger.info(f"Processing {dataset_name}")
        
        with open(ann_path, 'r') as f:
            data = json.load(f)
        
        # Map category IDs (Pedestrian, Biker, Skater -> person)
        category_mapping = {}
        for cat in data.get('categories', []):
            if self.is_person_category(cat['name']):
                category_mapping[cat['id']] = 0
        
        # Process images and annotations
        image_id_mapping = {}
        images_with_persons = set()
        
        # First pass: identify images with person annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] in category_mapping:
                images_with_persons.add(ann['image_id'])
        
        # Process ALL images (drone dataset - keep all images)
        for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} images"):
            old_id = img['id']
            new_id = self.image_id_counter
            self.image_id_counter += 1
            image_id_mapping[old_id] = new_id
            
            img_filename = img['file_name']
            # Stanford drone has images in train_images folder
            possible_paths = [
                base_path / "train_images" / img_filename,
                base_path / img_filename,
                base_path / "images" / img_filename
            ]
            
            source_path = None
            for path in possible_paths:
                if path.exists():
                    source_path = path
                    break
            
            if source_path is None:
                logger.warning(f"Image not found in any expected location: {img_filename}")
                continue
            
            relative_path, dest_path = self.get_new_image_path(dataset_name, img_filename, new_id)
            
            if self.copy_image(source_path, dest_path):
                new_img = {
                    "id": new_id,
                    "file_name": relative_path,
                    "width": img.get('width', 0),
                    "height": img.get('height', 0),
                    "dataset": dataset_name,
                    "split": "train",
                    "original_filename": img_filename
                }
                self.combined_data['images'].append(new_img)
                self.stats[dataset_name]["total_images"] += 1
                if old_id in images_with_persons:
                    self.stats[dataset_name]["images_with_persons"] += 1
                self.stats[dataset_name]["splits"].add("train")
        
        # Process annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] not in category_mapping:
                continue
            if ann['image_id'] not in image_id_mapping:
                continue
            
            is_crowd = ann.get('iscrowd', 0) == 1
            
            new_ann = {
                "id": self.annotation_id_counter,
                "image_id": image_id_mapping[ann['image_id']],
                "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                "bbox": ann['bbox'],
                "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                "segmentation": ann.get('segmentation', []),
                "iscrowd": ann.get('iscrowd', 0)
            }
            self.combined_data['annotations'].append(new_ann)
            self.annotation_id_counter += 1
            self.stats[dataset_name]["total_annotations"] += 1
            if is_crowd:
                self.stats[dataset_name]["crowd_annotations"] += 1
                self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_coco_format_dataset(self, dataset_name: str, base_path: Path, ann_filename: str = "annotations.json"):
        """Generic processor for COCO format datasets."""
        ann_path = base_path / ann_filename
        if not ann_path.exists():
            logger.warning(f"Annotation file not found: {ann_path}")
            return
        
        logger.info(f"Processing {dataset_name}")
        
        with open(ann_path, 'r') as f:
            data = json.load(f)
        
        # Map category IDs
        category_mapping = {}
        for cat in data.get('categories', []):
            if self.is_person_category(cat['name']):
                category_mapping[cat['id']] = 0
        
        # Process images and annotations
        image_id_mapping = {}
        images_with_persons = set()
        
        # First pass: identify images with person annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] in category_mapping:
                images_with_persons.add(ann['image_id'])
        
        # Process ALL images (drone dataset - keep all images)
        for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} images"):
            old_id = img['id']
            new_id = self.image_id_counter
            self.image_id_counter += 1
            image_id_mapping[old_id] = new_id
            
            img_filename = img['file_name']
            # Most COCO datasets have the path included in file_name
            # Try different possible paths
            possible_paths = [
                base_path / img_filename,  # Full path as specified in JSON
                base_path / "images" / img_filename,
                base_path / Path(img_filename).name  # Just filename without path
            ]
            
            source_path = None
            for path in possible_paths:
                if path.exists():
                    source_path = path
                    break
            
            if source_path is None:
                logger.warning(f"Image not found: {img_filename}")
                continue
            
            relative_path, dest_path = self.get_new_image_path(dataset_name, Path(img_filename).name, new_id)
            
            if self.copy_image(source_path, dest_path):
                new_img = {
                    "id": new_id,
                    "file_name": relative_path,
                    "width": img.get('width', 0),
                    "height": img.get('height', 0),
                    "dataset": dataset_name,
                    "original_filename": img_filename
                }
                # Add split info if available
                if 'split' in img:
                    new_img['split'] = img['split']
                    self.stats[dataset_name]["splits"].add(img['split'])
                
                self.combined_data['images'].append(new_img)
                self.stats[dataset_name]["total_images"] += 1
                if old_id in images_with_persons:
                    self.stats[dataset_name]["images_with_persons"] += 1
        
        # Process annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] not in category_mapping:
                continue
            if ann['image_id'] not in image_id_mapping:
                continue
            
            # Check for crowd based on category name
            old_cat = next((c for c in data['categories'] if c['id'] == ann['category_id']), None)
            is_crowd = ann.get('iscrowd', 0)
            if old_cat and self.is_crowd_category(old_cat['name']):
                is_crowd = 1
            
            new_ann = {
                "id": self.annotation_id_counter,
                "image_id": image_id_mapping[ann['image_id']],
                "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                "bbox": ann['bbox'],
                "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                "segmentation": ann.get('segmentation', []),
                "iscrowd": is_crowd
            }
            self.combined_data['annotations'].append(new_ann)
            self.annotation_id_counter += 1
            self.stats[dataset_name]["total_annotations"] += 1
            if is_crowd:
                self.stats[dataset_name]["crowd_annotations"] += 1
                self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_visdrone(self):
        """Process VisDrone2019-DET dataset."""
        dataset_name = "visdrone2019"
        base_path = Path("/mnt/archive/person_drone/VisDrone2019-DET")
        
        ann_path = base_path / "annotations.json"
        if not ann_path.exists():
            logger.warning(f"Annotation file not found: {ann_path}")
            return
        
        logger.info(f"Processing {dataset_name}")
        
        with open(ann_path, 'r') as f:
            data = json.load(f)
        
        # Map category IDs (pedestrian, people -> person)
        category_mapping = {}
        for cat in data.get('categories', []):
            if self.is_person_category(cat['name']):
                category_mapping[cat['id']] = 0
        
        # Process images and annotations
        image_id_mapping = {}
        images_with_persons = set()
        
        # First pass: identify images with person annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] in category_mapping:
                images_with_persons.add(ann['image_id'])
        
        # Process ALL images (drone dataset - keep all images)
        for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} images"):
            old_id = img['id']
            new_id = self.image_id_counter
            self.image_id_counter += 1
            image_id_mapping[old_id] = new_id
            
            img_filename = img['file_name']
            # VisDrone has images in train_images, val_images, test_images folders
            # The file_name already includes the folder (e.g., "train_images/xxx.jpg")
            possible_paths = [
                base_path / img_filename,  # This should work as file_name includes the folder
                base_path / "images" / img_filename
            ]
            
            source_path = None
            for path in possible_paths:
                if path.exists():
                    source_path = path
                    break
            
            if source_path is None:
                logger.warning(f"Image not found: {img_filename}")
                continue
            
            relative_path, dest_path = self.get_new_image_path(dataset_name, Path(img_filename).name, new_id)
            
            if self.copy_image(source_path, dest_path):
                new_img = {
                    "id": new_id,
                    "file_name": relative_path,
                    "width": img.get('width', 0),
                    "height": img.get('height', 0),
                    "dataset": dataset_name,
                    "original_filename": img_filename
                }
                self.combined_data['images'].append(new_img)
                self.stats[dataset_name]["total_images"] += 1
                if old_id in images_with_persons:
                    self.stats[dataset_name]["images_with_persons"] += 1
        
        # Process annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] not in category_mapping:
                continue
            if ann['image_id'] not in image_id_mapping:
                continue
            
            is_crowd = 0
            new_ann = {
                "id": self.annotation_id_counter,
                "image_id": image_id_mapping[ann['image_id']],
                "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                "bbox": ann['bbox'],
                "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                "segmentation": ann.get('segmentation', []),
                "iscrowd": is_crowd
            }
            self.combined_data['annotations'].append(new_ann)
            self.annotation_id_counter += 1
            self.stats[dataset_name]["total_annotations"] += 1
            if is_crowd:
                self.stats[dataset_name]["crowd_annotations"] += 1
                self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_seadronessee(self):
        """Process SeaDronesSee dataset."""
        dataset_name = "seadronessee"
        base_path = Path("/mnt/archive/person_drone/seadronessee")
        ann_dir = base_path / "annotations"
        
        # Process train and val splits
        for split, ann_file in [("train", "instances_train.json"), ("val", "instances_val.json")]:
            ann_path = ann_dir / ann_file
            if not ann_path.exists():
                logger.warning(f"SeaDronesSee annotations missing for {split}: {ann_path}")
                continue
            
            logger.info(f"Processing {dataset_name} - {split}")
            
            with open(ann_path, 'r') as f:
                data = json.load(f)
            
            # Create category mappings
            swimmer_cat_id = None
            ignore_cat_ids = set()  # For boats, jetskis, and ignored
            
            for cat in data.get('categories', []):
                cat_name = cat.get('name', '').lower()
                if cat_name == 'swimmer':
                    swimmer_cat_id = cat['id']
                elif cat_name in ['boat', 'jetski', 'ignored']:
                    ignore_cat_ids.add(cat['id'])
            
            if swimmer_cat_id is None:
                logger.warning(f"No 'swimmer' category found in {ann_path}")
            
            # Identify images with swimmers or ignore regions
            images_with_persons = set()
            images_with_ignore = set()
            
            for ann in data.get('annotations', []):
                cat_id = ann.get('category_id')
                img_id = ann['image_id']
                if cat_id == swimmer_cat_id:
                    images_with_persons.add(img_id)
                elif cat_id in ignore_cat_ids:
                    images_with_ignore.add(img_id)
            
            # Process images
            image_id_mapping = {}
            for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} {split} images"):
                old_id = img['id']
                new_id = self.image_id_counter
                self.image_id_counter += 1
                image_id_mapping[old_id] = new_id
                
                img_filename = img.get('file_name', '')
                source_path = base_path / "images" / split / img_filename
                relative_path, dest_path = self.get_new_image_path(dataset_name, img_filename, new_id)
                
                if not source_path.exists():
                    self.stats[dataset_name]["missing_images"] += 1
                    if not self.dry_run:
                        continue
                
                if self.copy_image(source_path, dest_path):
                    new_img = {
                        "id": new_id,
                        "file_name": relative_path,
                        "width": img.get('width', 0),
                        "height": img.get('height', 0),
                        "dataset": dataset_name,
                        "split": split,
                        "original_filename": img_filename
                    }
                    self.combined_data['images'].append(new_img)
                    self.stats[dataset_name]["total_images"] += 1
                    if old_id in images_with_persons:
                        self.stats[dataset_name]["images_with_persons"] += 1
                    self.stats[dataset_name]["splits"].add(split)
            
            # Process annotations
            for ann in data.get('annotations', []):
                cat_id = ann.get('category_id')
                img_id = ann['image_id']
                
                if img_id not in image_id_mapping:
                    continue
                
                # Determine target category
                if cat_id == swimmer_cat_id:
                    # Swimmer -> person (0) or ignore (1) if crowd
                    is_crowd = ann.get('iscrowd', 0) == 1
                    target_cat = 1 if is_crowd else 0
                elif cat_id in ignore_cat_ids:
                    # Boats, jetskis, ignored -> ignore (1)
                    target_cat = 1
                    is_crowd = 1  # Treat all ignore regions as crowd
                else:
                    # Skip other categories (life_saving_appliances, buoy)
                    continue
                
                new_ann = {
                    "id": self.annotation_id_counter,
                    "image_id": image_id_mapping[img_id],
                    "category_id": target_cat,
                    "bbox": ann.get('bbox', []),
                    "area": ann.get('area', ann.get('bbox', [0, 0, 0, 0])[2] * ann.get('bbox', [0, 0, 0, 0])[3]),
                    "segmentation": ann.get('segmentation', []),
                    "iscrowd": is_crowd if cat_id == swimmer_cat_id else 1
                }
                self.combined_data['annotations'].append(new_ann)
                self.annotation_id_counter += 1
                self.stats[dataset_name]["total_annotations"] += 1
                
                if target_cat == 1:
                    self.stats[dataset_name]["ignore_annotations"] += 1
                if new_ann['iscrowd']:
                    self.stats[dataset_name]["crowd_annotations"] += 1
    
    def process_lisa_alert(self):
        """Process LISA Alert dataset - combines all splits (train/val/test) into one."""
        dataset_name = "lisa_alert"
        base_path = Path("/mnt/archive/person_drone/lisa_alert")
        ann_dir = base_path / "annotations"
        
        logger.info(f"Processing {dataset_name} - combining all splits")
        
        # We'll process all splits but combine them into one dataset
        splits_to_process = ["train", "val", "test"]
        
        # Track which images we've already processed (to avoid duplicates)
        processed_images = set()
        
        for split in splits_to_process:
            ann_path = ann_dir / f"{split}.json"
            if not ann_path.exists():
                logger.warning(f"LISA Alert annotation file not found: {ann_path}")
                continue
            
            logger.info(f"Processing {dataset_name} - {split} split")
            
            with open(ann_path, 'r') as f:
                data = json.load(f)
            
            # Map category IDs (Pedestrian -> person)
            category_mapping = {}
            for cat in data.get('categories', []):
                if self.is_person_category(cat['name']):
                    category_mapping[cat['id']] = 0
            
            # Process images and annotations
            image_id_mapping = {}
            images_with_persons = set()
            
            # First pass: identify images with person annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] in category_mapping:
                    images_with_persons.add(ann['image_id'])
            
            # Process images
            for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} {split} images"):
                old_id = img['id']
                img_filename = str(img['file_name']).strip()
                
                # LISA Alert filenames in JSON don't have .jpg extension
                if not img_filename.endswith('.jpg'):
                    img_filename = img_filename + '.jpg'
                
                # Skip if we've already processed this image from another split
                if img_filename in processed_images:
                    continue
                processed_images.add(img_filename)
                
                new_id = self.image_id_counter
                self.image_id_counter += 1
                image_id_mapping[old_id] = new_id
                
                # Images are in the images/ folder
                source_path = base_path / "images" / img_filename
                
                relative_path, dest_path = self.get_new_image_path(dataset_name, img_filename, new_id)
                
                if not source_path.exists():
                    self.stats[dataset_name]["missing_images"] += 1
                    if not self.dry_run:
                        continue
                
                if self.copy_image(source_path, dest_path):
                    new_img = {
                        "id": new_id,
                        "file_name": relative_path,
                        "width": img.get('width', 0),
                        "height": img.get('height', 0),
                        "dataset": dataset_name,
                        "original_filename": img_filename
                    }
                    self.combined_data['images'].append(new_img)
                    self.stats[dataset_name]["total_images"] += 1
                    if old_id in images_with_persons:
                        self.stats[dataset_name]["images_with_persons"] += 1
            
            # Process annotations
            for ann in data.get('annotations', []):
                if ann['category_id'] not in category_mapping:
                    continue
                if ann['image_id'] not in image_id_mapping:
                    continue
                
                # Check for crowd
                old_cat_name = next((c['name'] for c in data['categories'] if c['id'] == ann['category_id']), '')
                is_crowd = self.is_crowd_category(old_cat_name) or ann.get('iscrowd', 0) == 1
                
                new_ann = {
                    "id": self.annotation_id_counter,
                    "image_id": image_id_mapping[ann['image_id']],
                    "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                    "bbox": ann['bbox'],
                    "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                    "segmentation": ann.get('segmentation', []),
                    "iscrowd": 1 if is_crowd else 0
                }
                self.combined_data['annotations'].append(new_ann)
                self.annotation_id_counter += 1
                self.stats[dataset_name]["total_annotations"] += 1
                if is_crowd:
                    self.stats[dataset_name]["crowd_annotations"] += 1
                    self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_wisard(self):
        """Process WISARD dataset with special handling for pseudolabeled annotations."""
        dataset_name = "wisard"
        base_path = Path("/mnt/archive/person_drone/wisard_coco")
        ann_path = base_path / "annotations.json"
        
        if not ann_path.exists():
            logger.warning(f"Annotation file not found: {ann_path}")
            return
        
        logger.info(f"Processing {dataset_name} - includes pseudolabeled annotations")
        
        with open(ann_path, 'r') as f:
            data = json.load(f)
        
        # WISARD has special category mapping:
        # Category 0: pseudolabeled persons
        # Category 1: verified/original persons
        # Both should map to our unified person category (0)
        
        # Track statistics for pseudolabeled vs verified
        pseudolabel_stats = {
            "pseudolabeled": 0,
            "verified": 0,
            "low_confidence": 0,  # confidence < 0.3
            "high_confidence": 0   # confidence >= 0.7
        }
        
        # Process images and annotations
        image_id_mapping = {}
        images_with_persons = set()
        
        # First pass: identify images with person annotations (both categories)
        for ann in data.get('annotations', []):
            if ann['category_id'] in [0, 1]:  # Both are person categories
                images_with_persons.add(ann['image_id'])
        
        # Process ALL images
        for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} images"):
            old_id = img['id']
            new_id = self.image_id_counter
            self.image_id_counter += 1
            image_id_mapping[old_id] = new_id
            
            img_filename = img['file_name']
            # WISARD images are organized in sequence folders
            # The file_name already includes the folder structure
            possible_paths = [
                base_path / img_filename,  # Full path as specified in JSON
                base_path / Path(img_filename).name  # Just filename without path
            ]
            
            source_path = None
            for path in possible_paths:
                if path.exists():
                    source_path = path
                    break
            
            if source_path is None:
                # Many images were removed, so we just skip them
                self.stats[dataset_name]["missing_images"] += 1
                continue
            
            relative_path, dest_path = self.get_new_image_path(dataset_name, Path(img_filename).name, new_id)
            
            if self.copy_image(source_path, dest_path):
                new_img = {
                    "id": new_id,
                    "file_name": relative_path,
                    "width": img.get('width', 0),
                    "height": img.get('height', 0),
                    "dataset": dataset_name,
                    "original_filename": img_filename
                }
                
                # Add WISARD-specific metadata
                if 'sequence' in img:
                    new_img['sequence'] = img['sequence']
                if 'modality' in img:
                    new_img['modality'] = img['modality']
                    self.stats[dataset_name]["modalities"].add(img['modality'])
                if 'location' in img:
                    new_img['location'] = img['location']
                if 'sensor' in img:
                    new_img['sensor'] = img['sensor']
                
                self.combined_data['images'].append(new_img)
                self.stats[dataset_name]["total_images"] += 1
                if old_id in images_with_persons:
                    self.stats[dataset_name]["images_with_persons"] += 1
        
        # Process annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] not in [0, 1]:  # Only process person categories
                continue
            if ann['image_id'] not in image_id_mapping:
                continue
            
            # All WISARD annotations map to person (0) in our unified dataset
            # We preserve the pseudolabel metadata
            is_crowd = ann.get('iscrowd', 0) == 1
            
            new_ann = {
                "id": self.annotation_id_counter,
                "image_id": image_id_mapping[ann['image_id']],
                "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                "bbox": ann['bbox'],
                "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                "segmentation": ann.get('segmentation', []),
                "iscrowd": ann.get('iscrowd', 0)
            }
            
            # Preserve WISARD-specific metadata
            if 'is_pseudolabel' in ann:
                new_ann['is_pseudolabel'] = ann['is_pseudolabel']
                if ann['is_pseudolabel']:
                    pseudolabel_stats['pseudolabeled'] += 1
            
            if 'verified' in ann:
                new_ann['verified'] = ann['verified']
                if ann['verified']:
                    pseudolabel_stats['verified'] += 1
            
            if 'confidence' in ann:
                new_ann['confidence'] = ann['confidence']
                if ann['confidence'] < 0.3:
                    pseudolabel_stats['low_confidence'] += 1
                elif ann['confidence'] >= 0.7:
                    pseudolabel_stats['high_confidence'] += 1
            
            if 'sequence' in ann:
                new_ann['sequence'] = ann['sequence']
            
            if 'modality' in ann:
                new_ann['modality'] = ann['modality']
            
            self.combined_data['annotations'].append(new_ann)
            self.annotation_id_counter += 1
            self.stats[dataset_name]["total_annotations"] += 1
            if is_crowd:
                self.stats[dataset_name]["crowd_annotations"] += 1
                self.stats[dataset_name]["ignore_annotations"] += 1
        
        # Add pseudolabel statistics to dataset stats
        self.stats[dataset_name]["pseudolabeled_annotations"] = pseudolabel_stats['pseudolabeled']
        self.stats[dataset_name]["verified_annotations"] = pseudolabel_stats['verified']
        self.stats[dataset_name]["low_confidence_annotations"] = pseudolabel_stats['low_confidence']
        self.stats[dataset_name]["high_confidence_annotations"] = pseudolabel_stats['high_confidence']
        
        logger.info(f"WISARD dataset processed: {pseudolabel_stats['pseudolabeled']} pseudolabeled, "
                   f"{pseudolabel_stats['verified']} verified annotations")
    
    def process_crowd_human(self):
        """Process CrowdHuman dataset from pre-converted COCO format."""
        dataset_name = "crowd_human"
        
        # Use the pre-converted COCO format annotations
        ann_path = Path("/home/svakhreev/projects/DEIM/data/crowd_human_coco/annotations_combined.json")
        if not ann_path.exists():
            logger.warning(f"CrowdHuman annotations not found: {ann_path}")
            return
        
        logger.info(f"Processing {dataset_name}")
        
        with open(ann_path, 'r') as f:
            data = json.load(f)
        
        # CrowdHuman has person category with id=1 in the converted format
        # Map it to our unified person category (id=0)
        category_mapping = {}
        for cat in data.get('categories', []):
            if cat['name'].lower() == 'person':
                category_mapping[cat['id']] = 0  # Map to our person category
        
        # Process images and annotations
        image_id_mapping = {}
        images_with_persons = set()
        
        # First pass: identify images with person annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] in category_mapping:
                images_with_persons.add(ann['image_id'])
        
        # Process ALL images (keep all images from CrowdHuman)
        for img in tqdm(data.get('images', []), desc=f"Processing {dataset_name} images"):
            old_id = img['id']
            new_id = self.image_id_counter
            self.image_id_counter += 1
            image_id_mapping[old_id] = new_id
            
            img_filename = img['file_name']
            # CrowdHuman file_name format: "CrowdHuman_train/Images/273271,1a0d6000b9e1f5b7.jpg"
            # or "CrowdHuman_val/Images/273278,c9db000d5146c15.jpg"
            
            # Construct the source path
            source_path = Path("/mnt/archive/person_drone/crowd_human") / img_filename
            
            # Extract just the filename for the new path
            actual_filename = Path(img_filename).name
            relative_path, dest_path = self.get_new_image_path(dataset_name, actual_filename, new_id)
            
            if not source_path.exists():
                self.stats[dataset_name]["missing_images"] += 1
                if not self.dry_run:
                    continue
            
            if self.copy_image(source_path, dest_path):
                # Determine split from the path
                split = "unknown"
                if "train" in img_filename.lower():
                    split = "train"
                elif "val" in img_filename.lower():
                    split = "val"
                elif "test" in img_filename.lower():
                    split = "test"
                
                new_img = {
                    "id": new_id,
                    "file_name": relative_path,
                    "width": img.get('width', 0),
                    "height": img.get('height', 0),
                    "dataset": dataset_name,
                    "split": split,
                    "original_filename": img_filename
                }
                self.combined_data['images'].append(new_img)
                self.stats[dataset_name]["total_images"] += 1
                if old_id in images_with_persons:
                    self.stats[dataset_name]["images_with_persons"] += 1
                self.stats[dataset_name]["splits"].add(split)
        
        # Process annotations
        for ann in data.get('annotations', []):
            if ann['category_id'] not in category_mapping:
                continue
            if ann['image_id'] not in image_id_mapping:
                continue
            
            # CrowdHuman uses iscrowd flag for heavily occluded persons
            is_crowd = ann.get('iscrowd', 0) == 1
            
            new_ann = {
                "id": self.annotation_id_counter,
                "image_id": image_id_mapping[ann['image_id']],
                "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                "bbox": ann['bbox'],
                "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                "segmentation": ann.get('segmentation', []),
                "iscrowd": ann.get('iscrowd', 0)
            }
            self.combined_data['annotations'].append(new_ann)
            self.annotation_id_counter += 1
            self.stats[dataset_name]["total_annotations"] += 1
            if is_crowd:
                self.stats[dataset_name]["crowd_annotations"] += 1
                self.stats[dataset_name]["ignore_annotations"] += 1
    
    def process_objects365(self):
        """Process Objects365 dataset (only person category)."""
        dataset_name = "objects365"
        base_path = Path("/mnt/archive/datasets/OpenDataLab___Objects365")
        
        # Process train split
        ann_path = base_path / "raw/Objects365/data/train/zhiyuan_objv2_train.json"
        if ann_path.exists():
            logger.info(f"Processing {dataset_name} - train split (this may take a while...)")
            
            with open(ann_path, 'r') as f:
                data = json.load(f)
            
            # Find person category ID
            person_cat_id = None
            for cat in data.get('categories', []):
                if cat['name'].lower() == 'person':
                    person_cat_id = cat['id']
                    break
            
            if person_cat_id is None:
                logger.warning("Person category not found in Objects365")
                return
            
            # Process images and annotations
            image_id_mapping = {}
            images_with_persons = set()
            
            # First pass: identify images with person annotations
            logger.info("Identifying images with person annotations...")
            for ann in tqdm(data.get('annotations', []), desc="Scanning annotations"):
                if ann['category_id'] == person_cat_id:
                    images_with_persons.add(ann['image_id'])
            
            logger.info(f"Found {len(images_with_persons)} images with persons")
            
            # Create image ID to image dict for faster lookup
            id_to_image = {img['id']: img for img in data.get('images', [])}
            
            # Process only images with persons
            processed = 0
            
            for img_id in tqdm(images_with_persons, desc=f"Processing {dataset_name} images"):
                if img_id not in id_to_image:
                    continue
                    
                img = id_to_image[img_id]
                old_id = img['id']
                new_id = self.image_id_counter
                self.image_id_counter += 1
                image_id_mapping[old_id] = new_id
                
                img_filename = img['file_name']
                # Objects365 image paths need adjustment
                # JSON has: "images/v1/patch8/objects365_v1_00420917.jpg"
                # Actual path: "train/patch8/objects365_v1_00420917.jpg"
                
                # Extract patch and filename from the path
                path_parts = Path(img_filename).parts
                if len(path_parts) >= 3:
                    # Get patch directory and filename
                    patch_dir = path_parts[-2]  # e.g., "patch8"
                    filename = path_parts[-1]   # e.g., "objects365_v1_00420917.jpg"
                    source_path = base_path / "raw/Objects365/data/train" / patch_dir / filename
                else:
                    source_path = base_path / "raw/Objects365/data" / img_filename
                
                if not source_path.exists():
                    # In dry run, we still want to count the image even if file doesn't exist
                    if not self.dry_run:
                        continue
                    else:
                        self.stats[dataset_name]["missing_images"] = self.stats[dataset_name].get("missing_images", 0) + 1
                
                relative_path, dest_path = self.get_new_image_path(dataset_name, Path(img_filename).name, new_id)
                
                # In dry run or if file exists, add to dataset
                if self.dry_run or self.copy_image(source_path, dest_path):
                    new_img = {
                        "id": new_id,
                        "file_name": relative_path,
                        "width": img.get('width', 0),
                        "height": img.get('height', 0),
                        "dataset": dataset_name,
                        "split": "train",
                        "original_filename": img_filename
                    }
                    self.combined_data['images'].append(new_img)
                    self.stats[dataset_name]["total_images"] += 1
                    self.stats[dataset_name]["images_with_persons"] += 1
                    self.stats[dataset_name]["splits"].add("train")
                    processed += 1
            
            # Process annotations
            for ann in tqdm(data.get('annotations', []), desc="Processing annotations"):
                if ann['category_id'] != person_cat_id:
                    continue
                if ann['image_id'] not in image_id_mapping:
                    continue
                
                is_crowd = ann.get('iscrowd', 0) == 1
                
                new_ann = {
                    "id": self.annotation_id_counter,
                    "image_id": image_id_mapping[ann['image_id']],
                    "category_id": 1 if is_crowd else 0,  # crowd -> ignore (1), person -> 0
                    "bbox": ann['bbox'],
                    "area": ann.get('area', ann['bbox'][2] * ann['bbox'][3]),
                    "segmentation": ann.get('segmentation', []),
                    "iscrowd": ann.get('iscrowd', 0)
                }
                self.combined_data['annotations'].append(new_ann)
                self.annotation_id_counter += 1
                self.stats[dataset_name]["total_annotations"] += 1
                if is_crowd:
                    self.stats[dataset_name]["crowd_annotations"] += 1
                    self.stats[dataset_name]["ignore_annotations"] += 1
    
    def visualize_samples(self, num_samples: int = 10, dataset_filter: str = None):
        """Visualize random samples with bounding boxes using cv2.imshow."""
        if len(self.combined_data['images']) == 0:
            logger.warning("No images to visualize")
            return
        
        # Create image_id to annotations mapping
        img_to_anns = defaultdict(list)
        for ann in self.combined_data['annotations']:
            img_to_anns[ann['image_id']].append(ann)
        
        # Sample random images that have annotations
        images_with_anns = [img for img in self.combined_data['images'] 
                           if img['id'] in img_to_anns]
        
        # Filter by dataset if specified
        if dataset_filter:
            images_with_anns = [img for img in images_with_anns 
                               if img.get('dataset', '').lower() == dataset_filter.lower()]
            if not images_with_anns:
                logger.warning(f"No images with annotations from dataset '{dataset_filter}'")
                return
        
        if not images_with_anns:
            logger.warning("No images with annotations to visualize")
            return
        
        num_samples = min(num_samples, len(images_with_anns))
        sampled_images = random.sample(images_with_anns, num_samples)
        
        logger.info(f"Visualizing {num_samples} sample images with bounding boxes...")
        logger.info("Press any key to see next image, 'q' to quit")
        
        for idx, img_info in enumerate(sampled_images):
            # Determine the actual image path based on dataset
            dataset_name = img_info.get('dataset', '')
            original_filename = img_info.get('original_filename', img_info['file_name'])
            
            # Find the source image path
            if self.dry_run or not (self.images_dir / img_info['file_name']).exists():
                # In dry-run mode or if copied image doesn't exist, load from original location
                source_path = None
                
                if dataset_name == "rgbt_drone_person":
                    base = Path("/mnt/archive/person_drone/RGBTDronePerson-20250828T031729Z-1-001/RGBTDronePerson/RGBTDronePerson")
                    split = img_info.get('split', 'train')
                    modality = img_info.get('modality', 'thermal')
                    if split == "sub_train":
                        split = "train"
                    source_path = base / split / modality / original_filename
                    
                elif dataset_name == "search_and_rescue":
                    base = Path("/mnt/archive/person_drone/search-and-rescue")
                    split = img_info.get('split', 'train')
                    source_path = base / split / "images" / Path(original_filename).name
                    
                elif dataset_name == "stanford_drone":
                    base = Path("/mnt/archive/person_drone/stanford_drone_coco")
                    source_path = base / "train_images" / original_filename
                    
                elif dataset_name == "vtsar":
                    base = Path("/mnt/archive/person_drone/vtsar_coco")
                    source_path = base / original_filename
                    
                elif dataset_name == "vtuav":
                    base = Path("/mnt/archive/person_drone/vtuav_coco")
                    source_path = base / original_filename
                    
                elif dataset_name == "wisard":
                    base = Path("/mnt/archive/person_drone/wisard_coco")
                    source_path = base / original_filename
                    
                elif dataset_name == "visdrone2019":
                    base = Path("/mnt/archive/person_drone/VisDrone2019-DET")
                    source_path = base / original_filename
                    
                elif dataset_name == "seadronessee":
                    base = Path("/mnt/archive/person_drone/seadronessee")
                    split = img_info.get('split', 'train')
                    source_path = base / "images" / split / Path(original_filename).name
                    
                elif dataset_name == "lisa_alert":
                    base = Path("/mnt/archive/person_drone/lisa_alert")
                    source_path = base / "images" / Path(original_filename).name
                    
                elif dataset_name == "crowd_human":
                    base = Path("/mnt/archive/person_drone/crowd_human")
                    # original_filename contains the full path like "CrowdHuman_train/Images/xxx.jpg"
                    source_path = base / original_filename
                    
                elif dataset_name == "objects365":
                    base = Path("/mnt/archive/datasets/OpenDataLab___Objects365")
                    path_parts = Path(original_filename).parts
                    if len(path_parts) >= 3:
                        patch_dir = path_parts[-2]
                        filename = path_parts[-1]
                        source_path = base / "raw/Objects365/data/train" / patch_dir / filename
                    else:
                        source_path = base / "raw/Objects365/data" / original_filename
                
                if source_path and source_path.exists():
                    img = cv2.imread(str(source_path))
                else:
                    # Create placeholder if image not found
                    img = np.zeros((img_info.get('height', 480), 
                                  img_info.get('width', 640), 3), dtype=np.uint8)
                    img[:] = (50, 50, 50)
                    cv2.putText(img, "Image not found", (10, 30),
                               cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            else:
                # Load from copied location
                img_path = self.images_dir / img_info['file_name']
                img = cv2.imread(str(img_path))
            
            if img is None:
                # Create placeholder if loading failed
                img = np.zeros((img_info.get('height', 480), 
                              img_info.get('width', 640), 3), dtype=np.uint8)
                img[:] = (50, 50, 50)
                cv2.putText(img, "Failed to load image", (10, 30),
                           cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
            
            # Draw annotations
            annotations = img_to_anns[img_info['id']]
            
            for ann in annotations:
                # Get bbox
                x, y, w, h = ann['bbox']
                x, y, w, h = int(x), int(y), int(w), int(h)
                
                # Choose color based on category
                if ann.get('category_id', 0) == 1:
                    color = (0, 165, 255)  # Orange for ignore regions
                    label = "ignore"
                elif ann.get('iscrowd', 0):
                    color = (0, 165, 255)  # Orange for crowd (should be in ignore now)
                    label = "crowd"
                else:
                    color = (0, 255, 0)  # Green for individual person
                    label = "person"
                
                # Draw rectangle
                cv2.rectangle(img, (x, y), (x + w, y + h), color, 2)
                
                # Add label
                label_size, _ = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
                cv2.rectangle(img, (x, y - label_size[1] - 4), 
                            (x + label_size[0], y), color, -1)
                cv2.putText(img, label, (x, y - 2), 
                          cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1)
            
            # Add image info
            info_text = [
                f"Dataset: {img_info.get('dataset', 'unknown')}",
                f"Image ID: {img_info['id']}",
                f"Annotations: {len(annotations)}",
                f"Size: {img_info.get('width', 0)}x{img_info.get('height', 0)}"
            ]
            
            if 'split' in img_info:
                info_text.append(f"Split: {img_info['split']}")
            if 'modality' in img_info:
                info_text.append(f"Modality: {img_info['modality']}")
            
            # Draw info background
            y_offset = 10
            for text in info_text:
                text_size, _ = cv2.getTextSize(text, cv2.FONT_HERSHEY_SIMPLEX, 0.6, 1)
                cv2.rectangle(img, (5, y_offset), 
                            (10 + text_size[0], y_offset + text_size[1] + 5),
                            (0, 0, 0), -1)
                cv2.putText(img, text, (10, y_offset + text_size[1]), 
                          cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 1)
                y_offset += text_size[1] + 10
            
            # Display image
            window_name = f"Sample {idx+1}/{num_samples} - {img_info.get('dataset', 'unknown')} - ID: {img_info['id']}"
            cv2.namedWindow(window_name, cv2.WINDOW_KEEPRATIO)
            cv2.imshow(window_name, img)
            
            # Wait for key press
            key = cv2.waitKey(0) & 0xFF
            cv2.destroyWindow(window_name)
            
            if key == ord('q'):
                logger.info("Visualization stopped by user")
                break
        
        cv2.destroyAllWindows()
        logger.info("Visualization complete")
    
    def save_combined_dataset(self):
        """Save the combined dataset to disk."""
        if self.dry_run:
            logger.info(f"DRY RUN: Would save combined dataset to {self.annotations_file}")
            logger.info(f"DRY RUN: Dataset would contain {len(self.combined_data['images'])} images and {len(self.combined_data['annotations'])} annotations")
        else:
            logger.info(f"Saving combined dataset to {self.annotations_file}")
            with open(self.annotations_file, 'w') as f:
                json.dump(self.combined_data, f)
            logger.info("Dataset saved successfully")
    
    def print_statistics(self):
        """Print detailed statistics about the combined dataset."""
        print("\n" + "="*80)
        if self.dry_run:
            print("COMBINED DATASET STATISTICS (DRY RUN)")
        else:
            print("COMBINED DATASET STATISTICS")
        print("="*80)
        
        total_images = len(self.combined_data['images'])
        total_annotations = len(self.combined_data['annotations'])
        
        print(f"\nOVERALL:")
        print(f"  Total Images: {total_images:,}")
        print(f"  Total Annotations: {total_annotations:,}")
        print(f"  Average Annotations per Image: {total_annotations/max(total_images, 1):.2f}")
        
        print("\n" + "-"*80)
        print("PER-DATASET BREAKDOWN:")
        print("-"*80)
        
        # Calculate percentages
        for dataset_name, stats in sorted(self.stats.items()):
            img_pct = 100 * stats['images_with_persons'] / max(total_images, 1)
            ann_pct = 100 * stats['total_annotations'] / max(total_annotations, 1)
            
            print(f"\n{dataset_name.upper()}:")
            print(f"  Total images: {stats['total_images']:,}")
            print(f"  Images with persons: {stats['images_with_persons']:,} ({img_pct:.1f}% of total)")
            print(f"  Total annotations: {stats['total_annotations']:,} ({ann_pct:.1f}% of total)")
            if stats.get('missing_images', 0) > 0:
                print(f"  ⚠️  Missing images: {stats['missing_images']:,}")
            if stats['total_annotations'] > 0:
                print(f"  Crowd annotations: {stats['crowd_annotations']:,} ({100*stats['crowd_annotations']/stats['total_annotations']:.1f}%)")
                print(f"  Ignore annotations: {stats['ignore_annotations']:,} ({100*stats['ignore_annotations']/stats['total_annotations']:.1f}%)")
                # Show pseudolabel statistics if available (for WISARD)
                if 'pseudolabeled_annotations' in stats:
                    print(f"  Pseudolabeled: {stats['pseudolabeled_annotations']:,} ({100*stats['pseudolabeled_annotations']/stats['total_annotations']:.1f}%)")
                    print(f"  Verified: {stats['verified_annotations']:,} ({100*stats['verified_annotations']/stats['total_annotations']:.1f}%)")
                    if stats.get('low_confidence_annotations', 0) > 0 or stats.get('high_confidence_annotations', 0) > 0:
                        print(f"  Low confidence (<0.3): {stats['low_confidence_annotations']:,}")
                        print(f"  High confidence (≥0.7): {stats['high_confidence_annotations']:,}")
            if stats['modalities']:
                print(f"  Modalities: {', '.join(sorted(stats['modalities']))}")
            if stats['splits']:
                print(f"  Splits: {', '.join(sorted(stats['splits']))}")
            if stats['images_with_persons'] > 0:
                print(f"  Avg annotations/image: {stats['total_annotations']/stats['images_with_persons']:.2f}")
        
        # Image statistics
        if self.combined_data['images']:
            widths = [img['width'] for img in self.combined_data['images'] if img['width'] > 0]
            heights = [img['height'] for img in self.combined_data['images'] if img['height'] > 0]
            if widths and heights:
                print("\n" + "-"*80)
                print("IMAGE DIMENSIONS:")
                print("-"*80)
                print(f"  Width range: {min(widths)} - {max(widths)} pixels")
                print(f"  Height range: {min(heights)} - {max(heights)} pixels")
                print(f"  Average width: {sum(widths)/len(widths):.0f} pixels")
                print(f"  Average height: {sum(heights)/len(heights):.0f} pixels")
        
        # Annotation statistics
        if self.combined_data['annotations']:
            areas = [ann['area'] for ann in self.combined_data['annotations'] if ann['area'] > 0]
            crowd_count = sum(1 for ann in self.combined_data['annotations'] if ann['iscrowd'] == 1)
            
            print("\n" + "-"*80)
            print("ANNOTATION STATISTICS:")
            print("-"*80)
            print(f"  Total bounding boxes: {len(self.combined_data['annotations']):,}")
            print(f"  Crowd annotations: {crowd_count:,} ({100*crowd_count/len(self.combined_data['annotations']):.1f}%)")
            if areas:
                print(f"  Area range: {min(areas):.0f} - {max(areas):.0f} pixels²")
                print(f"  Average area: {sum(areas)/len(areas):.0f} pixels²")
        
        # Dataset contribution summary table
        print("\n" + "-"*80)
        print("DATASET CONTRIBUTION SUMMARY:")
        print("-"*80)
        print(f"{'Dataset':<25} {'Total Images':>12} {'With Person':>12} {'%':>7} {'Annotations':>12} {'%':>7}")
        print("-"*100)
        
        # Only show datasets that actually have images
        datasets_with_images = [(name, stats) for name, stats in self.stats.items() if stats['total_images'] > 0]
        
        for dataset_name, stats in sorted(datasets_with_images, key=lambda x: x[1]['total_images'], reverse=True):
            img_pct = 100 * stats['total_images'] / max(total_images, 1)
            ann_pct = 100 * stats['total_annotations'] / max(total_annotations, 1)
            print(f"{dataset_name:<25} {stats['total_images']:>12,} {stats['images_with_persons']:>12,} {img_pct:>6.1f}% {stats['total_annotations']:>12,} {ann_pct:>6.1f}%")
        
        print("-"*100)
        
        # Calculate totals for images with persons
        total_with_persons = sum(stats['images_with_persons'] for stats in self.stats.values())
        print(f"{'TOTAL':<25} {total_images:>12,} {total_with_persons:>12,} {'100.0%':>7} {total_annotations:>12,} {'100.0%':>7}")
        
        print("\n" + "="*80)
    
    def check_datasets(self):
        """Check which datasets are available."""
        datasets = {
            "RGBTDronePerson": Path("/mnt/archive/person_drone/RGBTDronePerson-20250828T031729Z-1-001/RGBTDronePerson"),
            "search-and-rescue": Path("/mnt/archive/person_drone/search-and-rescue"),
            "stanford_drone_coco": Path("/mnt/archive/person_drone/stanford_drone_coco"),
            "vtsar_coco": Path("/mnt/archive/person_drone/vtsar_coco"),
            "vtuav_coco": Path("/mnt/archive/person_drone/vtuav_coco"),
            "wisard_coco": Path("/mnt/archive/person_drone/wisard_coco"),
            "VisDrone2019-DET": Path("/mnt/archive/person_drone/VisDrone2019-DET"),
            "SeaDronesSee": Path("/mnt/archive/person_drone/seadronessee"),
            "LISA Alert": Path("/mnt/archive/person_drone/lisa_alert"),
            "CrowdHuman": Path("/mnt/archive/person_drone/crowd_human"),
            "Objects365": Path("/mnt/archive/datasets/OpenDataLab___Objects365")
        }
        
        print("\n" + "="*80)
        print("CHECKING DATASET AVAILABILITY")
        print("="*80)
        
        available = []
        missing = []
        
        for name, path in datasets.items():
            if path.exists():
                available.append(name)
                print(f"✅ {name}: Found at {path}")
            else:
                missing.append(name)
                print(f"❌ {name}: Not found at {path}")
        
        print(f"\nSummary: {len(available)} available, {len(missing)} missing")
        print("="*80 + "\n")
        
        return available, missing
    
    def run(self, visualize: bool = False, num_vis_samples: int = 10, vis_dataset: str = None):
        """Run the complete dataset combination pipeline."""
        # Check dataset availability
        available, missing = self.check_datasets()
        
        if missing and not self.dry_run:
            response = input(f"\n⚠️  {len(missing)} dataset(s) missing. Continue anyway? (y/n): ")
            if response.lower() != 'y':
                logger.info("Aborted by user")
                return
        
        logger.info("Starting dataset combination process...")
        
        # Process each dataset
        self.process_rgbt_drone_person()
        self.process_search_and_rescue()

        # bad annotations
        # self.process_stanford_drone()

        # Process COCO format datasets
        self.process_coco_format_dataset("vtsar", Path("/mnt/archive/person_drone/vtsar_coco"))
        # bad annotations
        # self.process_coco_format_dataset("vtuav", Path("/mnt/archive/person_drone/vtuav_coco"))
        
        # Process WISARD with special pseudolabel handling
        self.process_wisard()

        # Process VisDrone
        self.process_visdrone()

        # Process SeaDronesSee
        self.process_seadronessee()

        # Process LISA Alert
        self.process_lisa_alert()

        # Process CrowdHuman
        self.process_crowd_human()

        # # Process Objects365 (limited due to size)
        # self.process_objects365()

        # Save combined dataset
        self.save_combined_dataset()
        
        # Create visualizations if requested
        if visualize:
            self.visualize_samples(num_vis_samples, dataset_filter=vis_dataset)
        
        # Print statistics
        self.print_statistics()
        
        logger.info("Dataset combination complete!")


def main():
    parser = argparse.ArgumentParser(description="Combine multiple person detection datasets into a single COCO format dataset")
    parser.add_argument(
        "--output-dir",
        type=str,
        default="/mnt/archive/person_drone/combined_dataset",
        help="Output directory for the combined dataset"
    )
    parser.add_argument(
        "--dry-run",
        action="store_true",
        help="Run without copying images to check correctness"
    )
    parser.add_argument(
        "--skip-objects365",
        action="store_true",
        help="Skip Objects365 dataset (it's very large)"
    )
    parser.add_argument(
        "--visualize",
        action="store_true",
        help="Create visualization samples with bounding boxes"
    )
    parser.add_argument(
        "--num-vis-samples",
        type=int,
        default=200,
        help="Number of samples to visualize with cv2.imshow (default: 20)"
    )
    parser.add_argument(
        "--vis-dataset",
        type=str,
        default=None,
        help="Visualize samples only from specific daztaset (e.g., stanford_drone, visdrone2019)"
    )
    parser.add_argument(
        "--images-per-folder",
        type=int,
        default=10000,
        help="Number of images per folder for pagination (default: 10000)"
    )
    
    args = parser.parse_args()
    
    combiner = DatasetCombiner(args.output_dir, dry_run=args.dry_run, images_per_folder=args.images_per_folder)
    
    if args.skip_objects365:
        # Override the process_objects365 method to skip it
        combiner.process_objects365 = lambda: logger.info("Skipping Objects365 dataset")
    
    combiner.run(visualize=args.visualize, num_vis_samples=args.num_vis_samples, vis_dataset=args.vis_dataset)


if __name__ == "__main__":
    main()