Spaces:
Sleeping
Sleeping
File size: 11,804 Bytes
98a3af2 a65508e 98a3af2 7c35a94 9460c54 98a3af2 b081e74 23a9434 ebf66a5 13a86c1 ebf66a5 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 23a9434 98a3af2 b081e74 98a3af2 2eab525 98a3af2 a65508e 23a9434 a65508e 98a3af2 23a9434 98a3af2 23a9434 a65508e 23a9434 98a3af2 a65508e 23a9434 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
import json
import os
from pathlib import Path
from typing import Tuple
import cv2
import numpy as np
import torch
import torchvision.transforms as T
from PIL import Image
from yolo_model import BaseModel
_TORCH_MIN_VERSION = (2, 5)
def _parse_version(version_str: str) -> Tuple[int, ...]:
parts = []
for piece in version_str.split("+")[0].split("."):
try:
parts.append(int(piece))
except ValueError:
break
return tuple(parts)
class DeimHgnetV2MDrone(BaseModel):
def __init__(self, device: str, version: str = "v2"):
self.device = device
repo_root = Path(__file__).resolve().parents[1]
default_rel = (
Path("app_service") / "models" / f"model_deimhgnetV2m_{device}_{version}.pt"
)
# Allow explicit override via env var
override = (
Path(os.environ["DEIM_WEIGHTS_PATH"])
if "DEIM_WEIGHTS_PATH" in os.environ
else None
)
candidate_paths = [
override,
repo_root / default_rel,
Path(__file__).resolve().parent
/ "models"
/ f"model_deimhgnetV2m_{device}_{version}.pt",
Path.cwd() / "services" / default_rel,
Path("/app") / "services" / default_rel,
]
weights_path = next((p for p in candidate_paths if p and p.exists()), None)
if weights_path is None:
models_dir = Path(__file__).resolve().parent / "models"
alt_models_dir = repo_root / "app_service" / "models"
available = []
for d in [models_dir, alt_models_dir]:
try:
if d.exists():
available.extend(str(p.name) for p in d.glob("*.pt"))
except Exception:
pass
searched = [str(p) for p in candidate_paths if p]
raise FileNotFoundError(
"Model weights not found. Looked in: "
+ "; ".join(searched)
+ ". Available .pt files: "
+ (", ".join(sorted(set(available))) or "<none>")
)
cfg_path = weights_path.with_suffix(".json")
if not cfg_path.exists():
raise FileNotFoundError(
f"Config JSON not found next to weights: {cfg_path}"
)
version_tuple = _parse_version(torch.__version__)
if version_tuple < _TORCH_MIN_VERSION:
raise RuntimeError(
"PyTorch {} is too old for these weights. "
"Please upgrade to >= {}.{} (e.g. set torch==2.5.1 in Dockerfile).".format(
torch.__version__, *_TORCH_MIN_VERSION
)
)
size_bytes = weights_path.stat().st_size
if size_bytes < 1_000_000:
raise RuntimeError(
f"Weights file at {weights_path} is only {size_bytes} bytes. "
"This usually means Git LFS pointers were copied instead of the binary file. "
"Run `git lfs pull` before building the container to fetch the real weights."
)
self.cfg = json.load(open(cfg_path, "r"))
self._target_h, self._target_w = (
int(self.cfg["target_size"][0]),
int(self.cfg["target_size"][1]),
)
self._categories = self.cfg["categories"]
self._confs_by_categories = self.cfg["confs_by_categories"]
print(f"Loading model from: {weights_path}")
print(f"Model device: {self.device}")
self.model = torch.jit.load(weights_path, map_location=self.device).eval()
print(f"Model loaded successfully on device: {self.device}")
def _preprocess_image(self, image: Image):
transforms = T.Compose(
[
T.Resize((self.cfg["target_size"][0], self.cfg["target_size"][1])),
T.ToTensor(),
]
)
return transforms(image).unsqueeze(0).to(self.device)
def _postprocess_detections(self, scores, bboxes, min_confidence: float, wh: Tuple[int, int]):
w, h = wh
b_np = bboxes[0].cpu().numpy()
s_np = scores.sigmoid()[0].cpu().numpy()
mask = (s_np.max(axis=1) >= min_confidence).squeeze()
if not mask.any():
return np.zeros((0, 6), dtype=np.float32)
valid = b_np[mask]
cx, cy, box_w, box_h = valid[:, 0], valid[:, 1], valid[:, 2], valid[:, 3]
x1 = cx - box_w / 2
y1 = cy - box_h / 2
x2 = cx + box_w / 2
y2 = cy + box_h / 2
valid_xyxy = np.stack([x1, y1, x2, y2], axis=1) * [w, h, w, h]
return np.concatenate([
valid_xyxy,
s_np[mask].max(axis=1, keepdims=True),
s_np[mask].argmax(axis=1, keepdims=True)
], axis=1)
def _nms(self, dets):
if dets.shape[0] == 0 or self.cfg["nms_iou_thr"] <= 0:
return dets
class_ids = np.unique(dets[:, 5].astype(int))
keep_all = []
for class_id in class_ids:
class_mask = dets[:, 5] == class_id
class_dets = dets[class_mask]
if class_dets.shape[0] == 0:
continue
class_keep = self._nms_single_class(class_dets)
original_indices = np.where(class_mask)[0]
keep_all.extend(original_indices[class_keep])
return dets[keep_all] if keep_all else np.zeros((0, 6), dtype=np.float32)
def _nms_single_class(self, dets):
if dets.shape[0] == 0:
return []
x1 = dets[:, 0]
y1 = dets[:, 1]
x2 = dets[:, 2]
y2 = dets[:, 3]
scores = dets[:, 4]
areas = (x2 - x1 + 1) * (y2 - y1 + 1)
order = scores.argsort()[::-1]
keep = []
while order.size > 0:
i = order[0]
keep.append(i)
xx1 = np.maximum(x1[i], x1[order[1:]])
yy1 = np.maximum(y1[i], y1[order[1:]])
xx2 = np.minimum(x2[i], x2[order[1:]])
yy2 = np.minimum(y2[i], y2[order[1:]])
w = np.maximum(0.0, xx2 - xx1 + 1)
h = np.maximum(0.0, yy2 - yy1 + 1)
inter = w * h
iou = inter / (areas[i] + areas[order[1:]] - inter)
inds = np.where(iou <= self.cfg["nms_iou_thr"])[0]
order = order[inds + 1]
return keep
def _draw_detections_on_np(
self, image_np: np.ndarray, dets: np.ndarray
) -> np.ndarray:
for bbox in dets:
x1, y1, x2, y2, confidence, category_id = bbox
category_name = self._categories[int(category_id)]
conf_by_this_cat = self._confs_by_categories.get(category_name, 0.0)
if confidence < conf_by_this_cat:
continue
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
cv2.rectangle(image_np, (x1, y1), (x2, y2), (0, 255, 0), 2)
label = f"{category_name} {confidence:.2f}"
label_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
cv2.rectangle(
image_np,
(x1, y1 - label_size[1] - 10),
(x1 + label_size[0], y1),
(0, 255, 0),
-1,
)
cv2.putText(
image_np,
label,
(x1, y1 - 5),
cv2.FONT_HERSHEY_SIMPLEX,
0.5,
(0, 0, 0),
1,
)
return image_np
def _preprocess_frame_fast(self, frame_bgr: np.ndarray) -> torch.Tensor:
"""Convert BGR numpy frame to normalized tensor on target device."""
frame = np.ascontiguousarray(frame_bgr)
if frame.shape[0] != self._target_h or frame.shape[1] != self._target_w:
frame = cv2.resize(frame, (self._target_w, self._target_h))
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
tensor = torch.from_numpy(frame_rgb).permute(2, 0, 1).contiguous()
tensor = tensor.to(self.device, dtype=torch.float32).unsqueeze(0)
tensor = tensor.div(255.0)
return tensor
def annotate_frame_bgr(self, frame_bgr: np.ndarray, min_confidence: float) -> np.ndarray:
"""Run inference on a BGR frame and return annotated frame in BGR space."""
tensor = self._preprocess_frame_fast(frame_bgr)
with torch.inference_mode():
scores, bboxes = self.model(tensor)
dets = self._postprocess_detections(
scores, bboxes, min_confidence, (frame_bgr.shape[1], frame_bgr.shape[0])
)
dets = self._nms(dets)
annotated = frame_bgr.copy()
return self._draw_detections_on_np(annotated, dets)
def predict_image(self, image: Image, min_confidence: float) -> Image:
tensor = self._preprocess_image(image.copy())
with torch.no_grad():
labels, bboxes = self.model(tensor)
dets = self._postprocess_detections(labels, bboxes, min_confidence, image.size)
dets = self._nms(dets)
image_np: np.ndarray = np.array(image)
image_np = self._draw_detections_on_np(image_np, dets)
return Image.fromarray(image_np)
def predict_video(
self, video, min_confidence: float, target_dir_name="annotated_video"
):
input_path = str(video)
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
raise ValueError(f"Cannot open video: {input_path}")
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
input_p = Path(input_path)
out_dir = Path(target_dir_name)
out_dir.mkdir(parents=True, exist_ok=True)
# Use simple AVI format with MJPG codec (most compatible)
out_path = out_dir / f"{input_p.stem}_annotated.avi"
# Set up video writer with better error handling
fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
# Use MJPG codec which is most widely supported
fourcc = cv2.VideoWriter_fourcc(*"MJPG")
writer = cv2.VideoWriter(str(out_path), fourcc, fps, (width, height))
if not writer.isOpened():
# Fallback to XVID if MJPG fails
print("MJPG codec failed, trying XVID...")
fourcc = cv2.VideoWriter_fourcc(*"XVID")
writer = cv2.VideoWriter(str(out_path), fourcc, fps, (width, height))
if not writer.isOpened():
raise RuntimeError(
"Could not initialize video writer with MJPG or XVID codec"
)
print(f"DEIM Model: Processing video {input_p.name} ({width}x{height}, {fps:.1f} FPS)")
print(f"DEIM Model: Output will be saved to {out_path}")
frame_count = 0
while True:
ret, frame_bgr = cap.read()
if not ret:
break
frame_rgb = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB)
pil_img = Image.fromarray(frame_rgb)
tensor = self._preprocess_image(pil_img.copy())
with torch.no_grad():
labels, bboxes = self.model(tensor)
dets = self._postprocess_detections(
labels, bboxes, min_confidence, (width, height)
)
dets = self._nms(dets)
annotated_frame = self._draw_detections_on_np(
frame_bgr.copy(), dets
)
writer.write(annotated_frame)
frame_count += 1
print(f"processed {frame_count} frames...")
cap.release()
if writer is not None:
writer.release()
return str(out_path)
# if __name__ == "__main__":
# model = DeimHgnetV2MDrone(version="v3", device="cpu")
# output_image = model.predict_video("./resources/videos/raw/sample2.mp4", 0.3)
|