Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,47 +1,26 @@
|
|
| 1 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
import torch
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
|
| 7 |
-
import unicodedata
|
| 8 |
-
import re
|
| 9 |
import gradio as gr
|
| 10 |
-
from pprint import pprint
|
| 11 |
-
|
| 12 |
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
|
|
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
MODEL_ID,
|
| 20 |
-
revision=REVISION_ID,
|
| 21 |
-
torch_dtype=torch.bfloat16,
|
| 22 |
-
device_map="auto",
|
| 23 |
-
)
|
| 24 |
-
model.eval()
|
| 25 |
|
| 26 |
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
EOU_TOKEN_ID = tokenizer.convert_tokens_to_ids("<|im_end|>")
|
| 30 |
-
NEWLINE_TOKEN_ID = tokenizer.convert_tokens_to_ids('\n')
|
| 31 |
-
USER_TOKEN_IDS = (
|
| 32 |
-
tokenizer.convert_tokens_to_ids('user'),
|
| 33 |
-
tokenizer.convert_tokens_to_ids('<|user|>')
|
| 34 |
-
)
|
| 35 |
-
SPECIAL_TOKENS = set([
|
| 36 |
-
NEWLINE_TOKEN_ID,
|
| 37 |
-
START_TOKEN_ID,
|
| 38 |
-
tokenizer.convert_tokens_to_ids('user'),
|
| 39 |
-
tokenizer.convert_tokens_to_ids('assistant'),
|
| 40 |
-
])
|
| 41 |
-
CONTROL_TOKS = ['<|im_start|>', '<|im_end|>', 'user', 'assistant', '\n']
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
def normalize_text(text):
|
| 45 |
text = unicodedata.normalize("NFKC", text.lower())
|
| 46 |
text = ''.join(
|
| 47 |
ch for ch in text
|
|
@@ -51,145 +30,268 @@ def normalize_text(text):
|
|
| 51 |
return text
|
| 52 |
|
| 53 |
|
| 54 |
-
def
|
| 55 |
-
|
| 56 |
-
# assume single user turn
|
| 57 |
-
text = {'role': 'user', 'content': normalize_text(text)}
|
| 58 |
-
text = tokenizer.apply_chat_template(
|
| 59 |
-
[text],
|
| 60 |
-
tokenize=False,
|
| 61 |
-
add_generation_prompt=True
|
| 62 |
-
)
|
| 63 |
-
return text
|
| 64 |
-
|
| 65 |
|
| 66 |
-
def log_odds(p, eps=0):
|
| 67 |
-
return np.log(p /(1 - p + eps))
|
| 68 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
text,
|
| 89 |
add_special_tokens=False,
|
| 90 |
return_tensors="pt"
|
| 91 |
-
).to(model.device)
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
.
|
| 115 |
-
.
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
vmax=vmax_abs,
|
| 129 |
-
cmap=cmap,
|
| 130 |
-
height=70,
|
| 131 |
-
width=100,
|
| 132 |
)
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
|
|
|
|
|
|
| 140 |
|
| 141 |
-
def generate_highlighted_text(text, threshold=EN_THRESHOLD):
|
| 142 |
-
eps = 1e-12
|
| 143 |
-
if not text:
|
| 144 |
-
return []
|
| 145 |
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
|
|
|
| 149 |
|
| 150 |
-
df['score'] = (
|
| 151 |
-
df.pred.fillna(threshold)
|
| 152 |
-
.add(eps)
|
| 153 |
-
.apply(log_odds).sub(log_odds(threshold))
|
| 154 |
-
.mask(df.pred.isna() | df.pred.round(2) == 0)
|
| 155 |
-
)
|
| 156 |
-
max_abs_score = df['score'].abs().max() * 1.5
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
| 161 |
-
|
| 162 |
-
|
|
|
|
| 163 |
|
|
|
|
| 164 |
|
| 165 |
|
| 166 |
-
|
| 167 |
what is your phone number<|im_end|>
|
| 168 |
<|im_start|>user
|
| 169 |
555 410 0423<|im_end|>"""
|
| 170 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
gr.
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 194 |
|
| 195 |
demo.launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import re
|
| 3 |
+
import unicodedata
|
| 4 |
+
from functools import lru_cache
|
| 5 |
+
|
| 6 |
import numpy as np
|
| 7 |
import pandas as pd
|
| 8 |
import torch
|
| 9 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 10 |
|
|
|
|
|
|
|
| 11 |
import gradio as gr
|
|
|
|
|
|
|
| 12 |
|
| 13 |
|
| 14 |
+
# ===== Defaults (you can change from the UI too) =====
|
| 15 |
+
DEFAULT_MODEL_A_ID = "livekit/turn-detector"
|
| 16 |
+
DEFAULT_MODEL_A_REV = "v0.3.0-intl"
|
| 17 |
|
| 18 |
+
DEFAULT_MODEL_B_ID = "livekit/eou-experiment"
|
| 19 |
+
DEFAULT_MODEL_B_REV = "main" # adjust if there's a specific revision
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
+
# ===== Utilities =====
|
| 23 |
+
def normalize_text(text: str) -> str:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
text = unicodedata.normalize("NFKC", text.lower())
|
| 25 |
text = ''.join(
|
| 26 |
ch for ch in text
|
|
|
|
| 30 |
return text
|
| 31 |
|
| 32 |
|
| 33 |
+
def log_odds(p, eps=0.0):
|
| 34 |
+
return np.log(p / (1 - p + eps))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
# ===== Per-model runner (keeps tokenizer/model and token ids) =====
|
| 38 |
+
class ModelRunner:
|
| 39 |
+
def __init__(self, model_id: str, revision: str | None = None, dtype=torch.bfloat16):
|
| 40 |
+
self.model_id = model_id
|
| 41 |
+
self.revision = revision
|
| 42 |
|
| 43 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision)
|
| 44 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 45 |
+
model_id,
|
| 46 |
+
revision=revision,
|
| 47 |
+
torch_dtype=dtype,
|
| 48 |
+
device_map="auto",
|
| 49 |
+
)
|
| 50 |
+
self.model.eval()
|
| 51 |
+
|
| 52 |
+
# Pull commonly used tokens, falling back gracefully if not present
|
| 53 |
+
self.START_TOKEN_ID = self._tok_id("<|im_start|>")
|
| 54 |
+
self.EOU_TOKEN_ID = self._tok_id("<|im_end|>")
|
| 55 |
+
self.NEWLINE_TOKEN_ID = self._tok_id("\n")
|
| 56 |
+
|
| 57 |
+
# Common role tokens; include both legacy and chat-template variants
|
| 58 |
+
self.USER_TOKEN_IDS = tuple(
|
| 59 |
+
tid for tid in [
|
| 60 |
+
self._tok_id("user"),
|
| 61 |
+
self._tok_id("<|user|>")
|
| 62 |
+
] if tid is not None
|
| 63 |
+
)
|
| 64 |
|
| 65 |
+
# Tokens we do not want to score on (specials / scaffolding)
|
| 66 |
+
self.SPECIAL_TOKENS = set(
|
| 67 |
+
tid for tid in [
|
| 68 |
+
self.NEWLINE_TOKEN_ID,
|
| 69 |
+
self.START_TOKEN_ID,
|
| 70 |
+
self._tok_id("user"),
|
| 71 |
+
self._tok_id("assistant"),
|
| 72 |
+
] if tid is not None
|
| 73 |
+
)
|
| 74 |
|
| 75 |
+
# For filtering in display
|
| 76 |
+
self.CONTROL_TOKS = set([
|
| 77 |
+
"<|im_start|>", "<|im_end|>", "user", "assistant", "\n"
|
| 78 |
+
])
|
| 79 |
+
|
| 80 |
+
def _tok_id(self, tok: str) -> int | None:
|
| 81 |
+
tid = self.tokenizer.convert_tokens_to_ids(tok)
|
| 82 |
+
# convert_tokens_to_ids returns None or 0/-1 if unknown depending on tokenizer
|
| 83 |
+
if tid is None or tid < 0:
|
| 84 |
+
return None
|
| 85 |
+
return tid
|
| 86 |
+
|
| 87 |
+
def format_input(self, text: str) -> str:
|
| 88 |
+
# If not a chat-formatted string, wrap as a single user message via chat template
|
| 89 |
+
if "<|im_start|>" not in text:
|
| 90 |
+
msg = {"role": "user", "content": normalize_text(text)}
|
| 91 |
+
text = self.tokenizer.apply_chat_template(
|
| 92 |
+
[msg],
|
| 93 |
+
tokenize=False,
|
| 94 |
+
add_generation_prompt=True
|
| 95 |
+
)
|
| 96 |
+
return text
|
| 97 |
+
|
| 98 |
+
def make_pred_mask(self, input_ids: np.ndarray) -> np.ndarray:
|
| 99 |
+
"""Return boolean mask: True where we should compute EoT prob (user tokens only)."""
|
| 100 |
+
if self.START_TOKEN_ID is None or not self.USER_TOKEN_IDS:
|
| 101 |
+
# Fallback: score all non-special tokens if start/user not available
|
| 102 |
+
return np.array([tok not in self.SPECIAL_TOKENS for tok in input_ids], dtype=bool)
|
| 103 |
+
|
| 104 |
+
user_mask = [False] * len(input_ids)
|
| 105 |
+
is_user_role = False
|
| 106 |
+
for i in range(len(input_ids)):
|
| 107 |
+
tok = input_ids[i]
|
| 108 |
+
if (self.START_TOKEN_ID is not None) and (tok == self.START_TOKEN_ID) and i + 1 < len(input_ids):
|
| 109 |
+
is_user_role = input_ids[i + 1] in self.USER_TOKEN_IDS
|
| 110 |
+
user_mask[i] = False
|
| 111 |
+
continue
|
| 112 |
+
user_mask[i] = is_user_role and (tok not in self.SPECIAL_TOKENS)
|
| 113 |
+
return np.array(user_mask, dtype=bool)
|
| 114 |
+
|
| 115 |
+
@torch.no_grad()
|
| 116 |
+
def predict_eou(self, text: str) -> pd.DataFrame:
|
| 117 |
+
text = self.format_input(text)
|
| 118 |
+
|
| 119 |
+
with torch.amp.autocast(self.model.device.type):
|
| 120 |
+
inputs = self.tokenizer.encode(
|
| 121 |
text,
|
| 122 |
add_special_tokens=False,
|
| 123 |
return_tensors="pt"
|
| 124 |
+
).to(self.model.device)
|
| 125 |
+
|
| 126 |
+
outputs = self.model(inputs)
|
| 127 |
+
|
| 128 |
+
# probs over vocab for each position; then take the probability of EOU token
|
| 129 |
+
logits = outputs.logits
|
| 130 |
+
probs = torch.nn.functional.softmax(logits, dim=-1)
|
| 131 |
+
if self.EOU_TOKEN_ID is None:
|
| 132 |
+
# If the model/tokenizer doesn't have <|im_end|>, use newline as a proxy (last resort)
|
| 133 |
+
fallback_id = self.NEWLINE_TOKEN_ID if self.NEWLINE_TOKEN_ID is not None else 0
|
| 134 |
+
eou_probs = probs[..., fallback_id]
|
| 135 |
+
else:
|
| 136 |
+
eou_probs = probs[..., self.EOU_TOKEN_ID]
|
| 137 |
+
|
| 138 |
+
eou_probs = eou_probs.squeeze(0).float().cpu().numpy()
|
| 139 |
+
|
| 140 |
+
input_ids = inputs.squeeze(0).int().cpu().numpy()
|
| 141 |
+
mask = self.make_pred_mask(input_ids)
|
| 142 |
+
|
| 143 |
+
# set masked positions to NaN (not scored)
|
| 144 |
+
eou_probs_masked = eou_probs.copy()
|
| 145 |
+
eou_probs_masked[~mask] = np.nan
|
| 146 |
+
|
| 147 |
+
tokens = [self.tokenizer.decode(i) for i in input_ids]
|
| 148 |
+
return pd.DataFrame({"token": tokens, "pred": eou_probs_masked})
|
| 149 |
+
|
| 150 |
+
def make_styled_df(self, df: pd.DataFrame, thresh: float, cmap="coolwarm") -> str:
|
| 151 |
+
EPS = 1e-12
|
| 152 |
+
_df = df.copy()
|
| 153 |
+
_df = _df[~_df.token.isin(self.CONTROL_TOKS)]
|
| 154 |
+
_df.token = _df.token.replace({"\n": "⏎", " ": "␠"})
|
| 155 |
+
|
| 156 |
+
_df["log_odds"] = (
|
| 157 |
+
_df.pred.fillna(thresh)
|
| 158 |
+
.add(EPS)
|
| 159 |
+
.apply(log_odds).sub(log_odds(thresh))
|
| 160 |
+
.mask(_df.pred.isna())
|
|
|
|
|
|
|
|
|
|
|
|
|
| 161 |
)
|
| 162 |
+
_df["Prob(EoT) as %"] = _df.pred.mul(100).fillna(0).astype(int)
|
| 163 |
+
vmin, vmax = _df.log_odds.min(), _df.log_odds.max()
|
| 164 |
+
vmax_abs = max(abs(vmin), abs(vmax)) * 1.5 if pd.notna(vmin) and pd.notna(vmax) else 1.0
|
| 165 |
+
|
| 166 |
+
fmt = (
|
| 167 |
+
_df.drop(columns=["pred"])
|
| 168 |
+
.style
|
| 169 |
+
.bar(
|
| 170 |
+
subset=["log_odds"],
|
| 171 |
+
align="zero",
|
| 172 |
+
vmin=-vmax_abs,
|
| 173 |
+
vmax=vmax_abs,
|
| 174 |
+
cmap=cmap,
|
| 175 |
+
height=70,
|
| 176 |
+
width=100,
|
| 177 |
+
)
|
| 178 |
+
.text_gradient(subset=["log_odds"], cmap=cmap, vmin=-vmax_abs, vmax=vmax_abs)
|
| 179 |
+
.format(na_rep="", precision=1, subset=["log_odds"])
|
| 180 |
+
.format("{:3d}", subset=["Prob(EoT) as %"])
|
| 181 |
+
.hide(axis="index")
|
| 182 |
+
)
|
| 183 |
+
return fmt.to_html()
|
| 184 |
+
|
| 185 |
+
def generate_highlighted_text(self, text: str, threshold: float):
|
| 186 |
+
"""Returns: (highlighted_list, styled_html) for Gradio"""
|
| 187 |
+
eps = 1e-12
|
| 188 |
+
if not text:
|
| 189 |
+
return [], "<div>No input.</div>"
|
| 190 |
+
|
| 191 |
+
df = self.predict_eou(text)
|
| 192 |
+
df.token = df.token.replace({"user": "\nUSER:", "assistant": "\nAGENT:"})
|
| 193 |
+
df = df[~df.token.isin(self.CONTROL_TOKS)]
|
| 194 |
+
|
| 195 |
+
df["score"] = (
|
| 196 |
+
df.pred.fillna(threshold)
|
| 197 |
+
.add(eps)
|
| 198 |
+
.apply(log_odds).sub(log_odds(threshold))
|
| 199 |
+
.mask(df.pred.isna() | df.pred.round(2).eq(0))
|
| 200 |
+
)
|
| 201 |
+
max_abs_score = df["score"].abs().max()
|
| 202 |
+
if pd.notna(max_abs_score) and max_abs_score > 0:
|
| 203 |
+
df.score = df.score / (max_abs_score * 1.5)
|
| 204 |
|
| 205 |
+
styled_df = self.make_styled_df(df[["token", "pred"]], thresh=threshold)
|
| 206 |
+
return list(zip(df.token, df.score)), styled_df
|
| 207 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
+
# ===== Cached loaders so switching models in the UI is fast =====
|
| 210 |
+
@lru_cache(maxsize=4)
|
| 211 |
+
def get_runner(model_id: str, revision: str | None):
|
| 212 |
+
return ModelRunner(model_id, revision)
|
| 213 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 214 |
|
| 215 |
+
# ===== Gradio App =====
|
| 216 |
+
EN_THRESHOLD = 0.0049
|
| 217 |
+
|
| 218 |
+
def compare_models(
|
| 219 |
+
text: str,
|
| 220 |
+
model_a_id: str,
|
| 221 |
+
model_a_rev: str,
|
| 222 |
+
thresh_a: float,
|
| 223 |
+
model_b_id: str,
|
| 224 |
+
model_b_rev: str,
|
| 225 |
+
thresh_b: float,
|
| 226 |
+
):
|
| 227 |
+
runner_a = get_runner(model_a_id, model_a_rev if model_a_rev else None)
|
| 228 |
+
runner_b = get_runner(model_b_id, model_b_rev if model_b_rev else None)
|
| 229 |
+
|
| 230 |
+
ht_a, html_a = runner_a.generate_highlighted_text(text, threshold=thresh_a)
|
| 231 |
+
ht_b, html_b = runner_b.generate_highlighted_text(text, threshold=thresh_b)
|
| 232 |
|
| 233 |
+
# Optional: prepend small headers indicating model names in the HTML blocks
|
| 234 |
+
html_a = f"<h4 style='margin:0 0 8px 0'>{model_a_id}@{model_a_rev or 'default'}</h4>" + html_a
|
| 235 |
+
html_b = f"<h4 style='margin:0 0 8px 0'>{model_b_id}@{model_b_rev or 'default'}</h4>" + html_b
|
| 236 |
|
| 237 |
+
return ht_a, html_a, ht_b, html_b
|
| 238 |
|
| 239 |
|
| 240 |
+
EXAMPLE_CONVO = """<|im_start|>assistant
|
| 241 |
what is your phone number<|im_end|>
|
| 242 |
<|im_start|>user
|
| 243 |
555 410 0423<|im_end|>"""
|
| 244 |
|
| 245 |
+
with gr.Blocks(theme="soft", title="Turn Detector Debugger — Side by Side") as demo:
|
| 246 |
+
gr.Markdown(
|
| 247 |
+
"""# Turn Detector Debugger — Side by Side
|
| 248 |
+
Visualize predicted turn endings from **two models**.
|
| 249 |
+
Red ⇒ agent should reply • Blue ⇒ agent should wait"""
|
| 250 |
+
)
|
| 251 |
+
|
| 252 |
+
with gr.Row():
|
| 253 |
+
text_in = gr.Textbox(
|
| 254 |
+
label="Input Text",
|
| 255 |
+
info="If <|im_start|> is present, input is treated as chat-formatted; otherwise it's wrapped as a single user turn.",
|
| 256 |
+
value=EXAMPLE_CONVO,
|
| 257 |
+
lines=4,
|
| 258 |
+
)
|
| 259 |
|
| 260 |
+
with gr.Row():
|
| 261 |
+
with gr.Column():
|
| 262 |
+
gr.Markdown("### Model A")
|
| 263 |
+
model_a_id = gr.Textbox(value=DEFAULT_MODEL_A_ID, label="Model ID")
|
| 264 |
+
model_a_rev = gr.Textbox(value=DEFAULT_MODEL_A_REV, label="Revision (optional)")
|
| 265 |
+
thresh_a = gr.Slider(0.0001, 0.05, value=EN_THRESHOLD, step=0.0001, label="Threshold")
|
| 266 |
+
|
| 267 |
+
with gr.Column():
|
| 268 |
+
gr.Markdown("### Model B")
|
| 269 |
+
model_b_id = gr.Textbox(value=DEFAULT_MODEL_B_ID, label="Model ID")
|
| 270 |
+
model_b_rev = gr.Textbox(value=DEFAULT_MODEL_B_REV, label="Revision (optional)")
|
| 271 |
+
thresh_b = gr.Slider(0.0001, 0.05, value=EN_THRESHOLD, step=0.0001, label="Threshold")
|
| 272 |
+
|
| 273 |
+
run_btn = gr.Button("Run Comparison", variant="primary")
|
| 274 |
+
|
| 275 |
+
with gr.Row():
|
| 276 |
+
with gr.Column():
|
| 277 |
+
out_ht_a = gr.HighlightedText(
|
| 278 |
+
label="EoT Predictions (Model A)",
|
| 279 |
+
color_map="coolwarm",
|
| 280 |
+
scale=1.5,
|
| 281 |
+
)
|
| 282 |
+
out_html_a = gr.HTML(label="Raw scores (Model A)")
|
| 283 |
+
with gr.Column():
|
| 284 |
+
out_ht_b = gr.HighlightedText(
|
| 285 |
+
label="EoT Predictions (Model B)",
|
| 286 |
+
color_map="coolwarm",
|
| 287 |
+
scale=1.5,
|
| 288 |
+
)
|
| 289 |
+
out_html_b = gr.HTML(label="Raw scores (Model B)")
|
| 290 |
+
|
| 291 |
+
run_btn.click(
|
| 292 |
+
fn=compare_models,
|
| 293 |
+
inputs=[text_in, model_a_id, model_a_rev, thresh_a, model_b_id, model_b_rev, thresh_b],
|
| 294 |
+
outputs=[out_ht_a, out_html_a, out_ht_b, out_html_b]
|
| 295 |
+
)
|
| 296 |
|
| 297 |
demo.launch()
|