|
|
""" |
|
|
Docker Model Runner - Anthropic API Compatible |
|
|
Full compatibility with Anthropic Messages API + Interleaved Thinking |
|
|
Supports: /v1/messages, /anthropic/v1/messages, /api/v1/messages |
|
|
Optimized for: 2 vCPU, 16GB RAM |
|
|
""" |
|
|
from fastapi import FastAPI, HTTPException, Header, Request, status |
|
|
from fastapi.responses import StreamingResponse, HTMLResponse, FileResponse, JSONResponse |
|
|
from fastapi.exceptions import RequestValidationError |
|
|
from fastapi.staticfiles import StaticFiles |
|
|
from fastapi.middleware.cors import CORSMiddleware |
|
|
from pydantic import BaseModel, Field |
|
|
from typing import Optional, List, Union, Literal, Any, Dict |
|
|
import torch |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
import os |
|
|
from datetime import datetime |
|
|
from contextlib import asynccontextmanager |
|
|
import uuid |
|
|
import time |
|
|
import json |
|
|
import asyncio |
|
|
|
|
|
|
|
|
GENERATOR_MODEL = os.getenv("GENERATOR_MODEL", "distilgpt2") |
|
|
MODEL_DISPLAY_NAME = os.getenv("MODEL_NAME", "MiniMax-M2") |
|
|
|
|
|
|
|
|
torch.set_num_threads(2) |
|
|
|
|
|
|
|
|
models = {} |
|
|
|
|
|
|
|
|
def load_models(): |
|
|
global models |
|
|
print("Loading models for CPU inference...") |
|
|
models["tokenizer"] = AutoTokenizer.from_pretrained(GENERATOR_MODEL) |
|
|
models["model"] = AutoModelForCausalLM.from_pretrained(GENERATOR_MODEL) |
|
|
models["model"].eval() |
|
|
if models["tokenizer"].pad_token is None: |
|
|
models["tokenizer"].pad_token = models["tokenizer"].eos_token |
|
|
print("✅ All models loaded successfully!") |
|
|
|
|
|
|
|
|
@asynccontextmanager |
|
|
async def lifespan(app: FastAPI): |
|
|
load_models() |
|
|
yield |
|
|
models.clear() |
|
|
|
|
|
|
|
|
app = FastAPI( |
|
|
title="Model Runner", |
|
|
description="Anthropic API Compatible - Works with Claude Code & Agentic Tools", |
|
|
version="1.1.0", |
|
|
lifespan=lifespan, |
|
|
docs_url="/api/docs", |
|
|
redoc_url="/api/redoc" |
|
|
) |
|
|
|
|
|
|
|
|
app.add_middleware( |
|
|
CORSMiddleware, |
|
|
allow_origins=["*"], |
|
|
allow_credentials=True, |
|
|
allow_methods=["*"], |
|
|
allow_headers=["*"], |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class AnthropicError(BaseModel): |
|
|
type: str |
|
|
message: str |
|
|
|
|
|
|
|
|
class AnthropicErrorResponse(BaseModel): |
|
|
type: str = "error" |
|
|
error: AnthropicError |
|
|
|
|
|
|
|
|
def create_error_response(status_code: int, error_type: str, message: str) -> JSONResponse: |
|
|
"""Create Anthropic-compatible error response.""" |
|
|
return JSONResponse( |
|
|
status_code=status_code, |
|
|
content={ |
|
|
"type": "error", |
|
|
"error": { |
|
|
"type": error_type, |
|
|
"message": message |
|
|
} |
|
|
} |
|
|
) |
|
|
|
|
|
|
|
|
@app.exception_handler(RequestValidationError) |
|
|
async def validation_exception_handler(request: Request, exc: RequestValidationError): |
|
|
"""Handle validation errors (400 - invalid_request_error).""" |
|
|
errors = exc.errors() |
|
|
message = "; ".join([f"{e['loc'][-1]}: {e['msg']}" for e in errors]) |
|
|
return create_error_response(400, "invalid_request_error", message) |
|
|
|
|
|
|
|
|
@app.exception_handler(HTTPException) |
|
|
async def http_exception_handler(request: Request, exc: HTTPException): |
|
|
"""Handle HTTP exceptions with Anthropic error format.""" |
|
|
error_mapping = { |
|
|
400: "invalid_request_error", |
|
|
401: "authentication_error", |
|
|
403: "permission_error", |
|
|
404: "not_found_error", |
|
|
413: "request_too_large", |
|
|
429: "rate_limit_error", |
|
|
500: "api_error", |
|
|
529: "overloaded_error" |
|
|
} |
|
|
error_type = error_mapping.get(exc.status_code, "api_error") |
|
|
return create_error_response(exc.status_code, error_type, str(exc.detail)) |
|
|
|
|
|
|
|
|
@app.exception_handler(Exception) |
|
|
async def general_exception_handler(request: Request, exc: Exception): |
|
|
"""Handle unexpected errors (500 - api_error).""" |
|
|
return create_error_response(500, "api_error", f"An unexpected error occurred: {str(exc)}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class TextBlock(BaseModel): |
|
|
type: Literal["text"] = "text" |
|
|
text: str |
|
|
|
|
|
|
|
|
class ThinkingBlock(BaseModel): |
|
|
type: Literal["thinking"] = "thinking" |
|
|
thinking: str |
|
|
|
|
|
|
|
|
class SignatureBlock(BaseModel): |
|
|
type: Literal["signature"] = "signature" |
|
|
signature: str |
|
|
|
|
|
|
|
|
class ToolUseBlock(BaseModel): |
|
|
type: Literal["tool_use"] = "tool_use" |
|
|
id: str |
|
|
name: str |
|
|
input: Dict[str, Any] |
|
|
|
|
|
|
|
|
class ToolResultContent(BaseModel): |
|
|
type: Literal["tool_result"] = "tool_result" |
|
|
tool_use_id: str |
|
|
content: Union[str, List[TextBlock]] |
|
|
is_error: Optional[bool] = False |
|
|
|
|
|
|
|
|
class ImageSource(BaseModel): |
|
|
type: Literal["base64", "url"] |
|
|
media_type: Optional[str] = None |
|
|
data: Optional[str] = None |
|
|
url: Optional[str] = None |
|
|
|
|
|
|
|
|
class ImageBlock(BaseModel): |
|
|
type: Literal["image"] = "image" |
|
|
source: ImageSource |
|
|
|
|
|
|
|
|
ContentBlock = Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock, ToolResultContent, ImageBlock, str] |
|
|
|
|
|
|
|
|
class MessageParam(BaseModel): |
|
|
role: Literal["user", "assistant"] |
|
|
content: Union[str, List[ContentBlock]] |
|
|
|
|
|
|
|
|
class ToolInputSchema(BaseModel): |
|
|
type: str = "object" |
|
|
properties: Optional[Dict[str, Any]] = None |
|
|
required: Optional[List[str]] = None |
|
|
|
|
|
|
|
|
class Tool(BaseModel): |
|
|
name: str |
|
|
description: str |
|
|
input_schema: ToolInputSchema |
|
|
|
|
|
|
|
|
class ToolChoice(BaseModel): |
|
|
type: Literal["auto", "any", "tool"] = "auto" |
|
|
name: Optional[str] = None |
|
|
disable_parallel_tool_use: Optional[bool] = False |
|
|
|
|
|
|
|
|
class ThinkingConfig(BaseModel): |
|
|
type: Literal["enabled", "disabled"] = "disabled" |
|
|
budget_tokens: Optional[int] = None |
|
|
|
|
|
|
|
|
class Metadata(BaseModel): |
|
|
user_id: Optional[str] = None |
|
|
|
|
|
|
|
|
class AnthropicRequest(BaseModel): |
|
|
model: str = "MiniMax-M2" |
|
|
messages: List[MessageParam] |
|
|
max_tokens: int = 4096 |
|
|
temperature: Optional[float] = Field(default=1.0, gt=0.0, le=1.0) |
|
|
top_p: Optional[float] = Field(default=1.0, gt=0.0, le=1.0) |
|
|
top_k: Optional[int] = None |
|
|
stop_sequences: Optional[List[str]] = None |
|
|
stream: Optional[bool] = False |
|
|
system: Optional[Union[str, List[TextBlock]]] = None |
|
|
tools: Optional[List[Tool]] = None |
|
|
tool_choice: Optional[Union[ToolChoice, Dict[str, Any]]] = None |
|
|
metadata: Optional[Metadata] = None |
|
|
thinking: Optional[Union[ThinkingConfig, Dict[str, Any]]] = None |
|
|
service_tier: Optional[str] = None |
|
|
|
|
|
|
|
|
class Usage(BaseModel): |
|
|
input_tokens: int |
|
|
output_tokens: int |
|
|
cache_creation_input_tokens: Optional[int] = 0 |
|
|
cache_read_input_tokens: Optional[int] = 0 |
|
|
|
|
|
|
|
|
class AnthropicResponse(BaseModel): |
|
|
id: str |
|
|
type: Literal["message"] = "message" |
|
|
role: Literal["assistant"] = "assistant" |
|
|
content: List[Union[TextBlock, ThinkingBlock, SignatureBlock, ToolUseBlock]] |
|
|
model: str |
|
|
stop_reason: Optional[Literal["end_turn", "max_tokens", "stop_sequence", "tool_use"]] = "end_turn" |
|
|
stop_sequence: Optional[str] = None |
|
|
usage: Usage |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def extract_text_from_content(content: Union[str, List[ContentBlock]]) -> str: |
|
|
if isinstance(content, str): |
|
|
return content |
|
|
texts = [] |
|
|
for block in content: |
|
|
if isinstance(block, str): |
|
|
texts.append(block) |
|
|
elif hasattr(block, 'text'): |
|
|
texts.append(block.text) |
|
|
elif hasattr(block, 'thinking'): |
|
|
texts.append(block.thinking) |
|
|
elif isinstance(block, dict): |
|
|
if block.get('type') == 'text': |
|
|
texts.append(block.get('text', '')) |
|
|
elif block.get('type') == 'thinking': |
|
|
texts.append(block.get('thinking', '')) |
|
|
return " ".join(texts) |
|
|
|
|
|
|
|
|
def format_system_prompt(system: Optional[Union[str, List[TextBlock]]]) -> str: |
|
|
if system is None: |
|
|
return "" |
|
|
if isinstance(system, str): |
|
|
return system |
|
|
return " ".join([block.text for block in system if hasattr(block, 'text')]) |
|
|
|
|
|
|
|
|
def format_messages_to_prompt(messages: List[MessageParam], system: Optional[Union[str, List[TextBlock]]] = None, include_thinking: bool = False) -> str: |
|
|
prompt_parts = [] |
|
|
system_text = format_system_prompt(system) |
|
|
if system_text: |
|
|
prompt_parts.append(f"System: {system_text}\n\n") |
|
|
for msg in messages: |
|
|
role = msg.role |
|
|
content = msg.content |
|
|
if isinstance(content, list): |
|
|
for block in content: |
|
|
if isinstance(block, dict): |
|
|
block_type = block.get('type', 'text') |
|
|
if block_type == 'thinking' and include_thinking: |
|
|
prompt_parts.append(f"<thinking>{block.get('thinking', '')}</thinking>\n") |
|
|
elif block_type == 'text': |
|
|
text_content = block.get('text', '') |
|
|
if role == "user": |
|
|
prompt_parts.append(f"Human: {text_content}\n\n") |
|
|
else: |
|
|
prompt_parts.append(f"Assistant: {text_content}\n\n") |
|
|
elif block_type == 'tool_result': |
|
|
prompt_parts.append(f"Tool Result: {block.get('content', '')}\n\n") |
|
|
elif hasattr(block, 'type'): |
|
|
if block.type == 'thinking' and include_thinking: |
|
|
prompt_parts.append(f"<thinking>{block.thinking}</thinking>\n") |
|
|
elif block.type == 'text': |
|
|
if role == "user": |
|
|
prompt_parts.append(f"Human: {block.text}\n\n") |
|
|
else: |
|
|
prompt_parts.append(f"Assistant: {block.text}\n\n") |
|
|
else: |
|
|
content_text = content if isinstance(content, str) else extract_text_from_content(content) |
|
|
if role == "user": |
|
|
prompt_parts.append(f"Human: {content_text}\n\n") |
|
|
elif role == "assistant": |
|
|
prompt_parts.append(f"Assistant: {content_text}\n\n") |
|
|
prompt_parts.append("Assistant:") |
|
|
return "".join(prompt_parts) |
|
|
|
|
|
|
|
|
def generate_text(prompt: str, max_tokens: int, temperature: float, top_p: float) -> tuple: |
|
|
tokenizer = models["tokenizer"] |
|
|
model = models["model"] |
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024) |
|
|
input_tokens = inputs["input_ids"].shape[1] |
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=min(max_tokens, 512), |
|
|
temperature=temperature if temperature > 0 else 1.0, |
|
|
top_p=top_p, |
|
|
do_sample=temperature > 0, |
|
|
pad_token_id=tokenizer.pad_token_id, |
|
|
eos_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
generated_tokens = outputs[0][input_tokens:] |
|
|
output_tokens = len(generated_tokens) |
|
|
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
return generated_text.strip(), input_tokens, output_tokens |
|
|
|
|
|
|
|
|
def generate_thinking(prompt: str, budget_tokens: int = 100) -> tuple: |
|
|
tokenizer = models["tokenizer"] |
|
|
model = models["model"] |
|
|
thinking_prompt = f"{prompt}\n\nLet me think through this step by step:\n" |
|
|
inputs = tokenizer(thinking_prompt, return_tensors="pt", truncation=True, max_length=512) |
|
|
input_tokens = inputs["input_ids"].shape[1] |
|
|
with torch.no_grad(): |
|
|
outputs = model.generate( |
|
|
**inputs, |
|
|
max_new_tokens=min(budget_tokens, 256), |
|
|
temperature=0.7, |
|
|
top_p=0.9, |
|
|
do_sample=True, |
|
|
pad_token_id=tokenizer.pad_token_id, |
|
|
eos_token_id=tokenizer.eos_token_id |
|
|
) |
|
|
generated_tokens = outputs[0][input_tokens:] |
|
|
thinking_tokens = len(generated_tokens) |
|
|
thinking_text = tokenizer.decode(generated_tokens, skip_special_tokens=True) |
|
|
return thinking_text.strip(), thinking_tokens |
|
|
|
|
|
|
|
|
async def generate_stream_with_thinking(prompt: str, max_tokens: int, temperature: float, top_p: float, message_id: str, model_name: str, thinking_enabled: bool = False, thinking_budget: int = 100): |
|
|
tokenizer = models["tokenizer"] |
|
|
model = models["model"] |
|
|
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024) |
|
|
input_tokens = inputs["input_ids"].shape[1] |
|
|
total_output_tokens = 0 |
|
|
|
|
|
message_start = { |
|
|
"type": "message_start", |
|
|
"message": {"id": message_id, "type": "message", "role": "assistant", "content": [], "model": model_name, "stop_reason": None, "stop_sequence": None, "usage": {"input_tokens": input_tokens, "output_tokens": 0}} |
|
|
} |
|
|
yield f"event: message_start\ndata: {json.dumps(message_start)}\n\n" |
|
|
|
|
|
content_index = 0 |
|
|
|
|
|
if thinking_enabled: |
|
|
thinking_block_start = {"type": "content_block_start", "index": content_index, "content_block": {"type": "thinking", "thinking": ""}} |
|
|
yield f"event: content_block_start\ndata: {json.dumps(thinking_block_start)}\n\n" |
|
|
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget) |
|
|
total_output_tokens += thinking_tokens |
|
|
for i in range(0, len(thinking_text), 10): |
|
|
chunk = thinking_text[i:i+10] |
|
|
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'thinking_delta', 'thinking': chunk}})}\n\n" |
|
|
await asyncio.sleep(0.01) |
|
|
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n" |
|
|
content_index += 1 |
|
|
|
|
|
yield f"event: content_block_start\ndata: {json.dumps({'type': 'content_block_start', 'index': content_index, 'content_block': {'type': 'text', 'text': ''}})}\n\n" |
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model.generate(**inputs, max_new_tokens=min(max_tokens, 512), temperature=temperature if temperature > 0 else 1.0, top_p=top_p, do_sample=temperature > 0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id) |
|
|
|
|
|
generated_tokens = outputs[0][input_tokens:] |
|
|
generated_text = tokenizer.decode(generated_tokens, skip_special_tokens=True).strip() |
|
|
total_output_tokens += len(generated_tokens) |
|
|
|
|
|
for i in range(0, len(generated_text), 5): |
|
|
yield f"event: content_block_delta\ndata: {json.dumps({'type': 'content_block_delta', 'index': content_index, 'delta': {'type': 'text_delta', 'text': generated_text[i:i+5]}})}\n\n" |
|
|
await asyncio.sleep(0.005) |
|
|
|
|
|
yield f"event: content_block_stop\ndata: {json.dumps({'type': 'content_block_stop', 'index': content_index})}\n\n" |
|
|
yield f"event: message_delta\ndata: {json.dumps({'type': 'message_delta', 'delta': {'stop_reason': 'end_turn', 'stop_sequence': None}, 'usage': {'output_tokens': total_output_tokens}})}\n\n" |
|
|
yield f"event: message_stop\ndata: {json.dumps({'type': 'message_stop'})}\n\n" |
|
|
|
|
|
|
|
|
def handle_tool_call(tools: List[Tool], messages: List[MessageParam], generated_text: str) -> Optional[ToolUseBlock]: |
|
|
if not tools: |
|
|
return None |
|
|
for tool in tools: |
|
|
if tool.name.lower() in generated_text.lower(): |
|
|
return ToolUseBlock(type="tool_use", id=f"toolu_{uuid.uuid4().hex[:24]}", name=tool.name, input={}) |
|
|
return None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def handle_messages(request: AnthropicRequest): |
|
|
"""Core handler for Anthropic Messages API""" |
|
|
try: |
|
|
message_id = f"msg_{uuid.uuid4().hex[:24]}" |
|
|
thinking_enabled = False |
|
|
thinking_budget = 100 |
|
|
|
|
|
if request.thinking: |
|
|
if isinstance(request.thinking, dict): |
|
|
thinking_enabled = request.thinking.get('type') == 'enabled' |
|
|
thinking_budget = request.thinking.get('budget_tokens', 100) or 100 |
|
|
else: |
|
|
thinking_enabled = request.thinking.type == 'enabled' |
|
|
thinking_budget = request.thinking.budget_tokens or 100 |
|
|
|
|
|
prompt = format_messages_to_prompt(request.messages, request.system, include_thinking=thinking_enabled) |
|
|
|
|
|
if request.stream: |
|
|
return StreamingResponse( |
|
|
generate_stream_with_thinking(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0, message_id, request.model, thinking_enabled, thinking_budget), |
|
|
media_type="text/event-stream", |
|
|
headers={"Cache-Control": "no-cache", "Connection": "keep-alive", "X-Accel-Buffering": "no"} |
|
|
) |
|
|
|
|
|
content_blocks = [] |
|
|
total_output_tokens = 0 |
|
|
|
|
|
if thinking_enabled: |
|
|
thinking_text, thinking_tokens = generate_thinking(prompt, thinking_budget) |
|
|
total_output_tokens += thinking_tokens |
|
|
content_blocks.append(ThinkingBlock(type="thinking", thinking=thinking_text)) |
|
|
|
|
|
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens, request.temperature or 1.0, request.top_p or 1.0) |
|
|
total_output_tokens += output_tokens |
|
|
|
|
|
tool_use = handle_tool_call(request.tools, request.messages, generated_text) if request.tools else None |
|
|
|
|
|
if tool_use: |
|
|
content_blocks.append(TextBlock(type="text", text=generated_text)) |
|
|
content_blocks.append(tool_use) |
|
|
stop_reason = "tool_use" |
|
|
else: |
|
|
content_blocks.append(TextBlock(type="text", text=generated_text)) |
|
|
stop_reason = "end_turn" |
|
|
|
|
|
return AnthropicResponse(id=message_id, content=content_blocks, model=request.model, stop_reason=stop_reason, usage=Usage(input_tokens=input_tokens, output_tokens=total_output_tokens)) |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/", response_class=HTMLResponse) |
|
|
async def home(): |
|
|
return HTMLResponse(content="""<!DOCTYPE html> |
|
|
<html><head><meta charset="UTF-8"><meta name="viewport" content="width=device-width,initial-scale=1"><title>Model Runner</title> |
|
|
<style>*{margin:0;padding:0;box-sizing:border-box}body{min-height:100vh;background:#000;display:flex;justify-content:center;align-items:center;font-family:system-ui,sans-serif} |
|
|
.container{display:flex;flex-direction:column;align-items:center;gap:2rem} |
|
|
.logo{width:200px;height:200px;animation:float 3s ease-in-out infinite;filter:drop-shadow(0 0 30px rgba(255,100,100,0.3))} |
|
|
.status{display:flex;align-items:center;gap:0.5rem;color:rgba(255,255,255,0.6);font-size:0.875rem} |
|
|
.dot{width:8px;height:8px;background:#22c55e;border-radius:50%;animation:pulse 2s ease-in-out infinite} |
|
|
.sparkle{position:fixed;bottom:2rem;right:2rem;opacity:0.4} |
|
|
@keyframes float{0%,100%{transform:translateY(0)}50%{transform:translateY(-10px)}} |
|
|
@keyframes pulse{0%,100%{opacity:1}50%{opacity:0.5}}</style></head> |
|
|
<body><div class="container"><div class="logo"><svg viewBox="0 0 200 200" fill="none"> |
|
|
<defs><linearGradient id="r" x1="0%" y1="100%" x2="100%" y2="0%"> |
|
|
<stop offset="0%" stop-color="#ff0080"/><stop offset="20%" stop-color="#ff4d00"/> |
|
|
<stop offset="40%" stop-color="#ffcc00"/><stop offset="60%" stop-color="#00ff88"/> |
|
|
<stop offset="80%" stop-color="#00ccff"/><stop offset="100%" stop-color="#6644ff"/></linearGradient></defs> |
|
|
<path d="M100 20 L180 160 L20 160 Z" stroke="url(#r)" stroke-width="12" stroke-linecap="round" stroke-linejoin="round" fill="none"/> |
|
|
<path d="M100 70 L130 130 L70 130 Z" stroke="url(#r)" stroke-width="8" stroke-linecap="round" stroke-linejoin="round" fill="none"/> |
|
|
<line x1="80" y1="115" x2="120" y2="115" stroke="url(#r)" stroke-width="6" stroke-linecap="round"/> |
|
|
</svg></div><div class="status"><span class="dot"></span><span>Ready</span></div></div> |
|
|
<svg class="sparkle" width="24" height="24" viewBox="0 0 24 24" fill="none"> |
|
|
<path d="M12 2L13.5 8.5L20 10L13.5 11.5L12 18L10.5 11.5L4 10L10.5 8.5L12 2Z" fill="rgba(255,255,255,0.6)"/></svg> |
|
|
</body></html>""") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.post("/v1/messages") |
|
|
async def messages_v1(request: AnthropicRequest): |
|
|
"""Standard Anthropic API endpoint""" |
|
|
return await handle_messages(request) |
|
|
|
|
|
|
|
|
@app.post("/anthropic/v1/messages") |
|
|
async def messages_anthropic(request: AnthropicRequest): |
|
|
"""Anthropic base path - for Claude Code compatibility""" |
|
|
return await handle_messages(request) |
|
|
|
|
|
|
|
|
@app.post("/api/v1/messages") |
|
|
async def messages_api(request: AnthropicRequest): |
|
|
"""API base path variant""" |
|
|
return await handle_messages(request) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class ChatMessage(BaseModel): |
|
|
role: str |
|
|
content: Union[str, List[Dict[str, Any]]] |
|
|
|
|
|
|
|
|
class ChatCompletionRequest(BaseModel): |
|
|
model: str = "gpt-4" |
|
|
messages: List[ChatMessage] |
|
|
max_tokens: Optional[int] = 4096 |
|
|
temperature: Optional[float] = 0.7 |
|
|
top_p: Optional[float] = 1.0 |
|
|
stream: Optional[bool] = False |
|
|
|
|
|
|
|
|
@app.post("/v1/chat/completions") |
|
|
async def chat_completions(request: ChatCompletionRequest): |
|
|
try: |
|
|
|
|
|
formatted_messages = [] |
|
|
for msg in request.messages: |
|
|
if msg.role in ["user", "assistant"]: |
|
|
content = msg.content |
|
|
if isinstance(content, list): |
|
|
text_parts = [c.get('text', '') for c in content if isinstance(c, dict) and c.get('type') == 'text'] |
|
|
content = ' '.join(text_parts) |
|
|
formatted_messages.append(MessageParam(role=msg.role, content=content)) |
|
|
|
|
|
prompt = format_messages_to_prompt(formatted_messages) |
|
|
generated_text, input_tokens, output_tokens = generate_text(prompt, request.max_tokens or 4096, request.temperature or 0.7, request.top_p or 1.0) |
|
|
|
|
|
return { |
|
|
"id": f"chatcmpl-{uuid.uuid4().hex[:24]}", |
|
|
"object": "chat.completion", |
|
|
"created": int(time.time()), |
|
|
"model": request.model, |
|
|
"choices": [{"index": 0, "message": {"role": "assistant", "content": generated_text}, "finish_reason": "stop"}], |
|
|
"usage": {"prompt_tokens": input_tokens, "completion_tokens": output_tokens, "total_tokens": input_tokens + output_tokens} |
|
|
} |
|
|
except Exception as e: |
|
|
raise HTTPException(status_code=500, detail=str(e)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/v1/models") |
|
|
@app.get("/anthropic/v1/models") |
|
|
@app.get("/api/v1/models") |
|
|
async def list_models(): |
|
|
return { |
|
|
"object": "list", |
|
|
"data": [ |
|
|
{"id": "claude-sonnet-4-20250514", "object": "model", "created": int(time.time()), "owned_by": "anthropic"}, |
|
|
{"id": "claude-3-5-sonnet-20241022", "object": "model", "created": int(time.time()), "owned_by": "anthropic"}, |
|
|
{"id": "MiniMax-M2", "object": "model", "created": int(time.time()), "owned_by": "local"}, |
|
|
{"id": "MiniMax-M2-Stable", "object": "model", "created": int(time.time()), "owned_by": "local"}, |
|
|
{"id": GENERATOR_MODEL, "object": "model", "created": int(time.time()), "owned_by": "local"} |
|
|
] |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
@app.get("/health") |
|
|
async def health(): |
|
|
return {"status": "healthy", "timestamp": datetime.utcnow().isoformat(), "models_loaded": len(models) > 0} |
|
|
|
|
|
|
|
|
@app.get("/info") |
|
|
async def info(): |
|
|
return { |
|
|
"name": "Model Runner", |
|
|
"version": "1.1.0", |
|
|
"api_compatibility": ["anthropic", "openai"], |
|
|
"base_paths": ["/v1/messages", "/anthropic/v1/messages", "/api/v1/messages"], |
|
|
"interleaved_thinking": True, |
|
|
"agentic_tools": True |
|
|
} |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import uvicorn |
|
|
uvicorn.run(app, host="0.0.0.0", port=7860) |
|
|
|