Spaces:
Paused
Paused
| import torch, warnings, glob, os, types | |
| import numpy as np | |
| from PIL import Image | |
| from einops import repeat, reduce | |
| from typing import Optional, Union | |
| from dataclasses import dataclass | |
| from modelscope import snapshot_download | |
| from einops import rearrange | |
| import numpy as np | |
| from PIL import Image | |
| from tqdm import tqdm | |
| from typing import Optional | |
| from typing_extensions import Literal | |
| from ..schedulers import FlowMatchScheduler | |
| from ..prompters import FluxPrompter | |
| from ..models import ModelManager, load_state_dict, SD3TextEncoder1, FluxTextEncoder2, FluxDiT, FluxVAEEncoder, FluxVAEDecoder | |
| from ..models.step1x_connector import Qwen2Connector | |
| from ..models.flux_controlnet import FluxControlNet | |
| from ..models.flux_ipadapter import FluxIpAdapter | |
| from ..models.flux_value_control import MultiValueEncoder | |
| from ..models.flux_infiniteyou import InfiniteYouImageProjector | |
| from ..models.flux_lora_encoder import FluxLoRAEncoder, LoRALayerBlock | |
| from ..models.tiler import FastTileWorker | |
| from ..utils import BasePipeline, ModelConfig, PipelineUnitRunner, PipelineUnit | |
| from ..lora.flux_lora import FluxLoRALoader, FluxLoraPatcher, FluxLoRAFuser | |
| from ..models.flux_dit import RMSNorm | |
| from ..vram_management import gradient_checkpoint_forward, enable_vram_management, AutoWrappedModule, AutoWrappedLinear | |
| class ControlNetInput: | |
| controlnet_id: int = 0 | |
| scale: float = 1.0 | |
| start: float = 1.0 | |
| end: float = 0.0 | |
| image: Image.Image = None | |
| inpaint_mask: Image.Image = None | |
| processor_id: str = None | |
| class MultiControlNet(torch.nn.Module): | |
| def __init__(self, models: list[FluxControlNet]): | |
| super().__init__() | |
| self.models = torch.nn.ModuleList(models) | |
| def process_single_controlnet(self, controlnet_input: ControlNetInput, conditioning: torch.Tensor, **kwargs): | |
| model = self.models[controlnet_input.controlnet_id] | |
| res_stack, single_res_stack = model( | |
| controlnet_conditioning=conditioning, | |
| processor_id=controlnet_input.processor_id, | |
| **kwargs | |
| ) | |
| res_stack = [res * controlnet_input.scale for res in res_stack] | |
| single_res_stack = [res * controlnet_input.scale for res in single_res_stack] | |
| return res_stack, single_res_stack | |
| def forward(self, conditionings: list[torch.Tensor], controlnet_inputs: list[ControlNetInput], progress_id, num_inference_steps, **kwargs): | |
| res_stack, single_res_stack = None, None | |
| for controlnet_input, conditioning in zip(controlnet_inputs, conditionings): | |
| progress = (num_inference_steps - 1 - progress_id) / max(num_inference_steps - 1, 1) | |
| if progress > controlnet_input.start or progress < controlnet_input.end: | |
| continue | |
| res_stack_, single_res_stack_ = self.process_single_controlnet(controlnet_input, conditioning, **kwargs) | |
| if res_stack is None: | |
| res_stack = res_stack_ | |
| single_res_stack = single_res_stack_ | |
| else: | |
| res_stack = [i + j for i, j in zip(res_stack, res_stack_)] | |
| single_res_stack = [i + j for i, j in zip(single_res_stack, single_res_stack_)] | |
| return res_stack, single_res_stack | |
| class FluxImagePipeline(BasePipeline): | |
| def __init__(self, device="cuda", torch_dtype=torch.bfloat16): | |
| super().__init__( | |
| device=device, torch_dtype=torch_dtype, | |
| height_division_factor=16, width_division_factor=16, | |
| ) | |
| self.scheduler = FlowMatchScheduler() | |
| self.prompter = FluxPrompter() | |
| self.text_encoder_1: SD3TextEncoder1 = None | |
| self.text_encoder_2: FluxTextEncoder2 = None | |
| self.dit: FluxDiT = None | |
| self.vae_decoder: FluxVAEDecoder = None | |
| self.vae_encoder: FluxVAEEncoder = None | |
| self.controlnet: MultiControlNet = None | |
| self.ipadapter: FluxIpAdapter = None | |
| self.ipadapter_image_encoder = None | |
| self.qwenvl = None | |
| self.step1x_connector: Qwen2Connector = None | |
| self.value_controller: MultiValueEncoder = None | |
| self.infinityou_processor: InfinitYou = None | |
| self.image_proj_model: InfiniteYouImageProjector = None | |
| self.lora_patcher: FluxLoraPatcher = None | |
| self.lora_encoder: FluxLoRAEncoder = None | |
| self.unit_runner = PipelineUnitRunner() | |
| self.in_iteration_models = ("dit", "step1x_connector", "controlnet", "lora_patcher") | |
| self.units = [ | |
| FluxImageUnit_ShapeChecker(), | |
| FluxImageUnit_NoiseInitializer(), | |
| FluxImageUnit_PromptEmbedder(), | |
| FluxImageUnit_InputImageEmbedder(), | |
| FluxImageUnit_ImageIDs(), | |
| FluxImageUnit_EmbeddedGuidanceEmbedder(), | |
| FluxImageUnit_Kontext(), | |
| FluxImageUnit_InfiniteYou(), | |
| FluxImageUnit_ControlNet(), | |
| FluxImageUnit_IPAdapter(), | |
| FluxImageUnit_EntityControl(), | |
| FluxImageUnit_TeaCache(), | |
| FluxImageUnit_Flex(), | |
| FluxImageUnit_Step1x(), | |
| FluxImageUnit_ValueControl(), | |
| FluxImageUnit_LoRAEncode(), | |
| ] | |
| self.model_fn = model_fn_flux_image | |
| def load_lora( | |
| self, | |
| module: torch.nn.Module, | |
| lora_config: Union[ModelConfig, str] = None, | |
| alpha=1, | |
| hotload=False, | |
| state_dict=None, | |
| ): | |
| if state_dict is None: | |
| if isinstance(lora_config, str): | |
| lora = load_state_dict(lora_config, torch_dtype=self.torch_dtype, device=self.device) | |
| else: | |
| lora_config.download_if_necessary() | |
| lora = load_state_dict(lora_config.path, torch_dtype=self.torch_dtype, device=self.device) | |
| else: | |
| lora = state_dict | |
| loader = FluxLoRALoader(torch_dtype=self.torch_dtype, device=self.device) | |
| lora = loader.convert_state_dict(lora) | |
| if hotload: | |
| for name, module in module.named_modules(): | |
| if isinstance(module, AutoWrappedLinear): | |
| lora_a_name = f'{name}.lora_A.default.weight' | |
| lora_b_name = f'{name}.lora_B.default.weight' | |
| if lora_a_name in lora and lora_b_name in lora: | |
| module.lora_A_weights.append(lora[lora_a_name] * alpha) | |
| module.lora_B_weights.append(lora[lora_b_name]) | |
| else: | |
| loader.load(module, lora, alpha=alpha) | |
| def load_loras( | |
| self, | |
| module: torch.nn.Module, | |
| lora_configs: list[Union[ModelConfig, str]], | |
| alpha=1, | |
| hotload=False, | |
| extra_fused_lora=False, | |
| ): | |
| for lora_config in lora_configs: | |
| self.load_lora(module, lora_config, hotload=hotload, alpha=alpha) | |
| if extra_fused_lora: | |
| lora_fuser = FluxLoRAFuser(device="cuda", torch_dtype=torch.bfloat16) | |
| fused_lora = lora_fuser(lora_configs) | |
| self.load_lora(module, state_dict=fused_lora, hotload=hotload, alpha=alpha) | |
| def clear_lora(self): | |
| for name, module in self.named_modules(): | |
| if isinstance(module, AutoWrappedLinear): | |
| if hasattr(module, "lora_A_weights"): | |
| module.lora_A_weights.clear() | |
| if hasattr(module, "lora_B_weights"): | |
| module.lora_B_weights.clear() | |
| def training_loss(self, **inputs): | |
| timestep_id = torch.randint(0, self.scheduler.num_train_timesteps, (1,)) | |
| timestep = self.scheduler.timesteps[timestep_id].to(dtype=self.torch_dtype, device=self.device) | |
| inputs["latents"] = self.scheduler.add_noise(inputs["input_latents"], inputs["noise"], timestep) | |
| training_target = self.scheduler.training_target(inputs["input_latents"], inputs["noise"], timestep) | |
| noise_pred = self.model_fn(**inputs, timestep=timestep) | |
| loss = torch.nn.functional.mse_loss(noise_pred.float(), training_target.float()) | |
| loss = loss * self.scheduler.training_weight(timestep) | |
| return loss | |
| def _enable_vram_management_with_default_config(self, model, vram_limit): | |
| if model is not None: | |
| dtype = next(iter(model.parameters())).dtype | |
| enable_vram_management( | |
| model, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.Embedding: AutoWrappedModule, | |
| torch.nn.LayerNorm: AutoWrappedModule, | |
| torch.nn.Conv2d: AutoWrappedModule, | |
| torch.nn.GroupNorm: AutoWrappedModule, | |
| RMSNorm: AutoWrappedModule, | |
| LoRALayerBlock: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=vram_limit, | |
| ) | |
| def enable_lora_magic(self): | |
| if self.dit is not None: | |
| if not (hasattr(self.dit, "vram_management_enabled") and self.dit.vram_management_enabled): | |
| dtype = next(iter(self.dit.parameters())).dtype | |
| enable_vram_management( | |
| self.dit, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device=self.device, | |
| onload_dtype=dtype, | |
| onload_device=self.device, | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=None, | |
| ) | |
| if self.lora_patcher is not None: | |
| for name, module in self.dit.named_modules(): | |
| if isinstance(module, AutoWrappedLinear): | |
| merger_name = name.replace(".", "___") | |
| if merger_name in self.lora_patcher.model_dict: | |
| module.lora_merger = self.lora_patcher.model_dict[merger_name] | |
| def enable_vram_management(self, num_persistent_param_in_dit=None, vram_limit=None, vram_buffer=0.5): | |
| self.vram_management_enabled = True | |
| if num_persistent_param_in_dit is not None: | |
| vram_limit = None | |
| else: | |
| if vram_limit is None: | |
| vram_limit = self.get_vram() | |
| vram_limit = vram_limit - vram_buffer | |
| # Default config | |
| default_vram_management_models = ["text_encoder_1", "vae_decoder", "vae_encoder", "controlnet", "image_proj_model", "ipadapter", "lora_patcher", "value_controller", "step1x_connector", "lora_encoder"] | |
| for model_name in default_vram_management_models: | |
| self._enable_vram_management_with_default_config(getattr(self, model_name), vram_limit) | |
| # Special config | |
| if self.text_encoder_2 is not None: | |
| from transformers.models.t5.modeling_t5 import T5LayerNorm, T5DenseActDense, T5DenseGatedActDense | |
| dtype = next(iter(self.text_encoder_2.parameters())).dtype | |
| enable_vram_management( | |
| self.text_encoder_2, | |
| module_map = { | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.Embedding: AutoWrappedModule, | |
| T5LayerNorm: AutoWrappedModule, | |
| T5DenseActDense: AutoWrappedModule, | |
| T5DenseGatedActDense: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=vram_limit, | |
| ) | |
| if self.dit is not None: | |
| dtype = next(iter(self.dit.parameters())).dtype | |
| device = "cpu" if vram_limit is not None else self.device | |
| enable_vram_management( | |
| self.dit, | |
| module_map = { | |
| RMSNorm: AutoWrappedModule, | |
| torch.nn.Linear: AutoWrappedLinear, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device=device, | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| max_num_param=num_persistent_param_in_dit, | |
| overflow_module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=vram_limit, | |
| ) | |
| if self.ipadapter_image_encoder is not None: | |
| from transformers.models.siglip.modeling_siglip import SiglipVisionEmbeddings, SiglipEncoder, SiglipMultiheadAttentionPoolingHead | |
| dtype = next(iter(self.ipadapter_image_encoder.parameters())).dtype | |
| enable_vram_management( | |
| self.ipadapter_image_encoder, | |
| module_map = { | |
| SiglipVisionEmbeddings: AutoWrappedModule, | |
| SiglipEncoder: AutoWrappedModule, | |
| SiglipMultiheadAttentionPoolingHead: AutoWrappedModule, | |
| torch.nn.MultiheadAttention: AutoWrappedModule, | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.LayerNorm: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=vram_limit, | |
| ) | |
| if self.qwenvl is not None: | |
| from transformers.models.qwen2_5_vl.modeling_qwen2_5_vl import ( | |
| Qwen2_5_VisionPatchEmbed, Qwen2_5_VLVisionBlock, Qwen2_5_VLPatchMerger, | |
| Qwen2_5_VLDecoderLayer, Qwen2_5_VisionRotaryEmbedding, Qwen2_5_VLRotaryEmbedding, Qwen2RMSNorm | |
| ) | |
| dtype = next(iter(self.qwenvl.parameters())).dtype | |
| enable_vram_management( | |
| self.qwenvl, | |
| module_map = { | |
| Qwen2_5_VisionPatchEmbed: AutoWrappedModule, | |
| Qwen2_5_VLVisionBlock: AutoWrappedModule, | |
| Qwen2_5_VLPatchMerger: AutoWrappedModule, | |
| Qwen2_5_VLDecoderLayer: AutoWrappedModule, | |
| Qwen2_5_VisionRotaryEmbedding: AutoWrappedModule, | |
| Qwen2_5_VLRotaryEmbedding: AutoWrappedModule, | |
| Qwen2RMSNorm: AutoWrappedModule, | |
| torch.nn.Embedding: AutoWrappedModule, | |
| torch.nn.Linear: AutoWrappedLinear, | |
| torch.nn.LayerNorm: AutoWrappedModule, | |
| }, | |
| module_config = dict( | |
| offload_dtype=dtype, | |
| offload_device="cpu", | |
| onload_dtype=dtype, | |
| onload_device="cpu", | |
| computation_dtype=self.torch_dtype, | |
| computation_device=self.device, | |
| ), | |
| vram_limit=vram_limit, | |
| ) | |
| def from_pretrained( | |
| torch_dtype: torch.dtype = torch.bfloat16, | |
| device: Union[str, torch.device] = "cuda", | |
| model_configs: list[ModelConfig] = [], | |
| ): | |
| # Download and load models | |
| model_manager = ModelManager() | |
| for model_config in model_configs: | |
| model_config.download_if_necessary() | |
| model_manager.load_model( | |
| model_config.path, | |
| device=model_config.offload_device or device, | |
| torch_dtype=model_config.offload_dtype or torch_dtype | |
| ) | |
| # Initialize pipeline | |
| pipe = FluxImagePipeline(device=device, torch_dtype=torch_dtype) | |
| pipe.text_encoder_1 = model_manager.fetch_model("sd3_text_encoder_1") | |
| pipe.text_encoder_2 = model_manager.fetch_model("flux_text_encoder_2") | |
| pipe.dit = model_manager.fetch_model("flux_dit") | |
| pipe.vae_decoder = model_manager.fetch_model("flux_vae_decoder") | |
| pipe.vae_encoder = model_manager.fetch_model("flux_vae_encoder") | |
| pipe.prompter.fetch_models(pipe.text_encoder_1, pipe.text_encoder_2) | |
| pipe.ipadapter = model_manager.fetch_model("flux_ipadapter") | |
| pipe.ipadapter_image_encoder = model_manager.fetch_model("siglip_vision_model") | |
| pipe.qwenvl = model_manager.fetch_model("qwenvl") | |
| pipe.step1x_connector = model_manager.fetch_model("step1x_connector") | |
| pipe.image_proj_model = model_manager.fetch_model("infiniteyou_image_projector") | |
| if pipe.image_proj_model is not None: | |
| pipe.infinityou_processor = InfinitYou(device=device) | |
| pipe.lora_patcher = model_manager.fetch_model("flux_lora_patcher") | |
| pipe.lora_encoder = model_manager.fetch_model("flux_lora_encoder") | |
| # ControlNet | |
| controlnets = [] | |
| for model_name, model in zip(model_manager.model_name, model_manager.model): | |
| if model_name == "flux_controlnet": | |
| controlnets.append(model) | |
| if len(controlnets) > 0: | |
| pipe.controlnet = MultiControlNet(controlnets) | |
| # Value Controller | |
| value_controllers = [] | |
| for model_name, model in zip(model_manager.model_name, model_manager.model): | |
| if model_name == "flux_value_controller": | |
| value_controllers.append(model) | |
| if len(value_controllers) > 0: | |
| pipe.value_controller = MultiValueEncoder(value_controllers) | |
| return pipe | |
| def __call__( | |
| self, | |
| # Prompt | |
| prompt: str, | |
| negative_prompt: str = "", | |
| cfg_scale: float = 1.0, | |
| embedded_guidance: float = 3.5, | |
| t5_sequence_length: int = 512, | |
| # Image | |
| input_image: Image.Image = None, | |
| denoising_strength: float = 1.0, | |
| # Shape | |
| height: int = 1024, | |
| width: int = 1024, | |
| # Randomness | |
| seed: int = None, | |
| rand_device: str = "cpu", | |
| # Scheduler | |
| sigma_shift: float = None, | |
| # Steps | |
| num_inference_steps: int = 30, | |
| # local prompts | |
| multidiffusion_prompts=(), | |
| multidiffusion_masks=(), | |
| multidiffusion_scales=(), | |
| # Kontext | |
| kontext_images: Union[list[Image.Image], Image.Image] = None, | |
| # ControlNet | |
| controlnet_inputs: list[ControlNetInput] = None, | |
| # IP-Adapter | |
| ipadapter_images: Union[list[Image.Image], Image.Image] = None, | |
| ipadapter_scale: float = 1.0, | |
| # EliGen | |
| eligen_entity_prompts: list[str] = None, | |
| eligen_entity_masks: list[Image.Image] = None, | |
| eligen_enable_on_negative: bool = False, | |
| eligen_enable_inpaint: bool = False, | |
| # InfiniteYou | |
| infinityou_id_image: Image.Image = None, | |
| infinityou_guidance: float = 1.0, | |
| # Flex | |
| flex_inpaint_image: Image.Image = None, | |
| flex_inpaint_mask: Image.Image = None, | |
| flex_control_image: Image.Image = None, | |
| flex_control_strength: float = 0.5, | |
| flex_control_stop: float = 0.5, | |
| # Value Controller | |
| value_controller_inputs: Union[list[float], float] = None, | |
| # Step1x | |
| step1x_reference_image: Image.Image = None, | |
| # LoRA Encoder | |
| lora_encoder_inputs: Union[list[ModelConfig], ModelConfig, str] = None, | |
| lora_encoder_scale: float = 1.0, | |
| # TeaCache | |
| tea_cache_l1_thresh: float = None, | |
| # Tile | |
| tiled: bool = False, | |
| tile_size: int = 128, | |
| tile_stride: int = 64, | |
| # Progress bar | |
| progress_bar_cmd = tqdm, | |
| ): | |
| # Scheduler | |
| self.scheduler.set_timesteps(num_inference_steps, denoising_strength=denoising_strength, shift=sigma_shift) | |
| inputs_posi = { | |
| "prompt": prompt, | |
| } | |
| inputs_nega = { | |
| "negative_prompt": negative_prompt, | |
| } | |
| inputs_shared = { | |
| "cfg_scale": cfg_scale, "embedded_guidance": embedded_guidance, "t5_sequence_length": t5_sequence_length, | |
| "input_image": input_image, "denoising_strength": denoising_strength, | |
| "height": height, "width": width, | |
| "seed": seed, "rand_device": rand_device, | |
| "sigma_shift": sigma_shift, "num_inference_steps": num_inference_steps, | |
| "multidiffusion_prompts": multidiffusion_prompts, "multidiffusion_masks": multidiffusion_masks, "multidiffusion_scales": multidiffusion_scales, | |
| "kontext_images": kontext_images, | |
| "controlnet_inputs": controlnet_inputs, | |
| "ipadapter_images": ipadapter_images, "ipadapter_scale": ipadapter_scale, | |
| "eligen_entity_prompts": eligen_entity_prompts, "eligen_entity_masks": eligen_entity_masks, "eligen_enable_on_negative": eligen_enable_on_negative, "eligen_enable_inpaint": eligen_enable_inpaint, | |
| "infinityou_id_image": infinityou_id_image, "infinityou_guidance": infinityou_guidance, | |
| "flex_inpaint_image": flex_inpaint_image, "flex_inpaint_mask": flex_inpaint_mask, "flex_control_image": flex_control_image, "flex_control_strength": flex_control_strength, "flex_control_stop": flex_control_stop, | |
| "value_controller_inputs": value_controller_inputs, | |
| "step1x_reference_image": step1x_reference_image, | |
| "lora_encoder_inputs": lora_encoder_inputs, "lora_encoder_scale": lora_encoder_scale, | |
| "tea_cache_l1_thresh": tea_cache_l1_thresh, | |
| "tiled": tiled, "tile_size": tile_size, "tile_stride": tile_stride, | |
| "progress_bar_cmd": progress_bar_cmd, | |
| } | |
| for unit in self.units: | |
| inputs_shared, inputs_posi, inputs_nega = self.unit_runner(unit, self, inputs_shared, inputs_posi, inputs_nega) | |
| # Denoise | |
| self.load_models_to_device(self.in_iteration_models) | |
| models = {name: getattr(self, name) for name in self.in_iteration_models} | |
| for progress_id, timestep in enumerate(progress_bar_cmd(self.scheduler.timesteps)): | |
| timestep = timestep.unsqueeze(0).to(dtype=self.torch_dtype, device=self.device) | |
| # Inference | |
| noise_pred_posi = self.model_fn(**models, **inputs_shared, **inputs_posi, timestep=timestep, progress_id=progress_id) | |
| if cfg_scale != 1.0: | |
| noise_pred_nega = self.model_fn(**models, **inputs_shared, **inputs_nega, timestep=timestep, progress_id=progress_id) | |
| noise_pred = noise_pred_nega + cfg_scale * (noise_pred_posi - noise_pred_nega) | |
| else: | |
| noise_pred = noise_pred_posi | |
| # Scheduler | |
| inputs_shared["latents"] = self.scheduler.step(noise_pred, self.scheduler.timesteps[progress_id], inputs_shared["latents"]) | |
| # Decode | |
| self.load_models_to_device(['vae_decoder']) | |
| image = self.vae_decoder(inputs_shared["latents"], device=self.device, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| image = self.vae_output_to_image(image) | |
| self.load_models_to_device([]) | |
| return image | |
| class FluxImageUnit_ShapeChecker(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("height", "width")) | |
| def process(self, pipe: FluxImagePipeline, height, width): | |
| height, width = pipe.check_resize_height_width(height, width) | |
| return {"height": height, "width": width} | |
| class FluxImageUnit_NoiseInitializer(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("height", "width", "seed", "rand_device")) | |
| def process(self, pipe: FluxImagePipeline, height, width, seed, rand_device): | |
| noise = pipe.generate_noise((1, 16, height//8, width//8), seed=seed, rand_device=rand_device) | |
| return {"noise": noise} | |
| class FluxImageUnit_InputImageEmbedder(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| input_params=("input_image", "noise", "tiled", "tile_size", "tile_stride"), | |
| onload_model_names=("vae_encoder",) | |
| ) | |
| def process(self, pipe: FluxImagePipeline, input_image, noise, tiled, tile_size, tile_stride): | |
| if input_image is None: | |
| return {"latents": noise, "input_latents": None} | |
| pipe.load_models_to_device(['vae_encoder']) | |
| image = pipe.preprocess_image(input_image).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| input_latents = pipe.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| if pipe.scheduler.training: | |
| return {"latents": noise, "input_latents": input_latents} | |
| else: | |
| latents = pipe.scheduler.add_noise(input_latents, noise, timestep=pipe.scheduler.timesteps[0]) | |
| return {"latents": latents, "input_latents": None} | |
| class FluxImageUnit_PromptEmbedder(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| seperate_cfg=True, | |
| input_params_posi={"prompt": "prompt", "positive": "positive"}, | |
| input_params_nega={"prompt": "negative_prompt", "positive": "positive"}, | |
| input_params=("t5_sequence_length",), | |
| onload_model_names=("text_encoder_1", "text_encoder_2") | |
| ) | |
| def process(self, pipe: FluxImagePipeline, prompt, t5_sequence_length, positive) -> dict: | |
| if pipe.text_encoder_1 is not None and pipe.text_encoder_2 is not None: | |
| prompt_emb, pooled_prompt_emb, text_ids = pipe.prompter.encode_prompt( | |
| prompt, device=pipe.device, positive=positive, t5_sequence_length=t5_sequence_length | |
| ) | |
| return {"prompt_emb": prompt_emb, "pooled_prompt_emb": pooled_prompt_emb, "text_ids": text_ids} | |
| else: | |
| return {} | |
| class FluxImageUnit_ImageIDs(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("latents",)) | |
| def process(self, pipe: FluxImagePipeline, latents): | |
| latent_image_ids = pipe.dit.prepare_image_ids(latents) | |
| return {"image_ids": latent_image_ids} | |
| class FluxImageUnit_EmbeddedGuidanceEmbedder(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("embedded_guidance", "latents")) | |
| def process(self, pipe: FluxImagePipeline, embedded_guidance, latents): | |
| guidance = torch.Tensor([embedded_guidance] * latents.shape[0]).to(device=latents.device, dtype=latents.dtype) | |
| return {"guidance": guidance} | |
| class FluxImageUnit_Kontext(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("kontext_images", "tiled", "tile_size", "tile_stride")) | |
| def process(self, pipe: FluxImagePipeline, kontext_images, tiled, tile_size, tile_stride): | |
| if kontext_images is None: | |
| return {} | |
| if not isinstance(kontext_images, list): | |
| kontext_images = [kontext_images] | |
| kontext_latents = [] | |
| kontext_image_ids = [] | |
| for kontext_image in kontext_images: | |
| kontext_image = pipe.preprocess_image(kontext_image) | |
| kontext_latent = pipe.vae_encoder(kontext_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| image_ids = pipe.dit.prepare_image_ids(kontext_latent) | |
| image_ids[..., 0] = 1 | |
| kontext_image_ids.append(image_ids) | |
| kontext_latent = pipe.dit.patchify(kontext_latent) | |
| kontext_latents.append(kontext_latent) | |
| kontext_latents = torch.concat(kontext_latents, dim=1) | |
| kontext_image_ids = torch.concat(kontext_image_ids, dim=-2) | |
| return {"kontext_latents": kontext_latents, "kontext_image_ids": kontext_image_ids} | |
| class FluxImageUnit_ControlNet(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| input_params=("controlnet_inputs", "tiled", "tile_size", "tile_stride"), | |
| onload_model_names=("vae_encoder",) | |
| ) | |
| def apply_controlnet_mask_on_latents(self, pipe, latents, mask): | |
| mask = (pipe.preprocess_image(mask) + 1) / 2 | |
| mask = mask.mean(dim=1, keepdim=True) | |
| mask = 1 - torch.nn.functional.interpolate(mask, size=latents.shape[-2:]) | |
| latents = torch.concat([latents, mask], dim=1) | |
| return latents | |
| def apply_controlnet_mask_on_image(self, pipe, image, mask): | |
| mask = mask.resize(image.size) | |
| mask = pipe.preprocess_image(mask).mean(dim=[0, 1]).cpu() | |
| image = np.array(image) | |
| image[mask > 0] = 0 | |
| image = Image.fromarray(image) | |
| return image | |
| def process(self, pipe: FluxImagePipeline, controlnet_inputs: list[ControlNetInput], tiled, tile_size, tile_stride): | |
| if controlnet_inputs is None: | |
| return {} | |
| pipe.load_models_to_device(['vae_encoder']) | |
| conditionings = [] | |
| for controlnet_input in controlnet_inputs: | |
| image = controlnet_input.image | |
| if controlnet_input.inpaint_mask is not None: | |
| image = self.apply_controlnet_mask_on_image(pipe, image, controlnet_input.inpaint_mask) | |
| image = pipe.preprocess_image(image).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| image = pipe.vae_encoder(image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| if controlnet_input.inpaint_mask is not None: | |
| image = self.apply_controlnet_mask_on_latents(pipe, image, controlnet_input.inpaint_mask) | |
| conditionings.append(image) | |
| return {"controlnet_conditionings": conditionings} | |
| class FluxImageUnit_IPAdapter(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| take_over=True, | |
| onload_model_names=("ipadapter_image_encoder", "ipadapter") | |
| ) | |
| def process(self, pipe: FluxImagePipeline, inputs_shared, inputs_posi, inputs_nega): | |
| ipadapter_images, ipadapter_scale = inputs_shared.get("ipadapter_images", None), inputs_shared.get("ipadapter_scale", 1.0) | |
| if ipadapter_images is None: | |
| return inputs_shared, inputs_posi, inputs_nega | |
| if not isinstance(ipadapter_images, list): | |
| ipadapter_images = [ipadapter_images] | |
| pipe.load_models_to_device(self.onload_model_names) | |
| images = [image.convert("RGB").resize((384, 384), resample=3) for image in ipadapter_images] | |
| images = [pipe.preprocess_image(image).to(device=pipe.device, dtype=pipe.torch_dtype) for image in images] | |
| ipadapter_images = torch.cat(images, dim=0) | |
| ipadapter_image_encoding = pipe.ipadapter_image_encoder(ipadapter_images).pooler_output | |
| inputs_posi.update({"ipadapter_kwargs_list": pipe.ipadapter(ipadapter_image_encoding, scale=ipadapter_scale)}) | |
| if inputs_shared.get("cfg_scale", 1.0) != 1.0: | |
| inputs_nega.update({"ipadapter_kwargs_list": pipe.ipadapter(torch.zeros_like(ipadapter_image_encoding))}) | |
| return inputs_shared, inputs_posi, inputs_nega | |
| class FluxImageUnit_EntityControl(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| take_over=True, | |
| onload_model_names=("text_encoder_1", "text_encoder_2") | |
| ) | |
| def preprocess_masks(self, pipe, masks, height, width, dim): | |
| out_masks = [] | |
| for mask in masks: | |
| mask = pipe.preprocess_image(mask.resize((width, height), resample=Image.NEAREST)).mean(dim=1, keepdim=True) > 0 | |
| mask = mask.repeat(1, dim, 1, 1).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| out_masks.append(mask) | |
| return out_masks | |
| def prepare_entity_inputs(self, pipe, entity_prompts, entity_masks, width, height, t5_sequence_length=512): | |
| entity_masks = self.preprocess_masks(pipe, entity_masks, height//8, width//8, 1) | |
| entity_masks = torch.cat(entity_masks, dim=0).unsqueeze(0) # b, n_mask, c, h, w | |
| prompt_emb, _, _ = pipe.prompter.encode_prompt( | |
| entity_prompts, device=pipe.device, t5_sequence_length=t5_sequence_length | |
| ) | |
| return prompt_emb.unsqueeze(0), entity_masks | |
| def prepare_eligen(self, pipe, prompt_emb_nega, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length, enable_eligen_on_negative, cfg_scale): | |
| entity_prompt_emb_posi, entity_masks_posi = self.prepare_entity_inputs(pipe, eligen_entity_prompts, eligen_entity_masks, width, height, t5_sequence_length) | |
| if enable_eligen_on_negative and cfg_scale != 1.0: | |
| entity_prompt_emb_nega = prompt_emb_nega['prompt_emb'].unsqueeze(1).repeat(1, entity_masks_posi.shape[1], 1, 1) | |
| entity_masks_nega = entity_masks_posi | |
| else: | |
| entity_prompt_emb_nega, entity_masks_nega = None, None | |
| eligen_kwargs_posi = {"entity_prompt_emb": entity_prompt_emb_posi, "entity_masks": entity_masks_posi} | |
| eligen_kwargs_nega = {"entity_prompt_emb": entity_prompt_emb_nega, "entity_masks": entity_masks_nega} | |
| return eligen_kwargs_posi, eligen_kwargs_nega | |
| def process(self, pipe: FluxImagePipeline, inputs_shared, inputs_posi, inputs_nega): | |
| eligen_entity_prompts, eligen_entity_masks = inputs_shared.get("eligen_entity_prompts", None), inputs_shared.get("eligen_entity_masks", None) | |
| if eligen_entity_prompts is None or eligen_entity_masks is None: | |
| return inputs_shared, inputs_posi, inputs_nega | |
| pipe.load_models_to_device(self.onload_model_names) | |
| eligen_kwargs_posi, eligen_kwargs_nega = self.prepare_eligen(pipe, inputs_nega, | |
| eligen_entity_prompts, eligen_entity_masks, inputs_shared["width"], inputs_shared["height"], | |
| inputs_shared["t5_sequence_length"], inputs_shared["eligen_enable_on_negative"], inputs_shared["cfg_scale"]) | |
| inputs_posi.update(eligen_kwargs_posi) | |
| if inputs_shared.get("cfg_scale", 1.0) != 1.0: | |
| inputs_nega.update(eligen_kwargs_nega) | |
| return inputs_shared, inputs_posi, inputs_nega | |
| class FluxImageUnit_Step1x(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(take_over=True,onload_model_names=("qwenvl","vae_encoder")) | |
| def process(self, pipe: FluxImagePipeline, inputs_shared: dict, inputs_posi: dict, inputs_nega: dict): | |
| image = inputs_shared.get("step1x_reference_image",None) | |
| if image is None: | |
| return inputs_shared, inputs_posi, inputs_nega | |
| else: | |
| pipe.load_models_to_device(self.onload_model_names) | |
| prompt = inputs_posi["prompt"] | |
| nega_prompt = inputs_nega["negative_prompt"] | |
| captions = [prompt, nega_prompt] | |
| ref_images = [image, image] | |
| embs, masks = pipe.qwenvl(captions, ref_images) | |
| image = pipe.preprocess_image(image).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| image = pipe.vae_encoder(image) | |
| inputs_posi.update({"step1x_llm_embedding": embs[0:1], "step1x_mask": masks[0:1], "step1x_reference_latents": image}) | |
| if inputs_shared.get("cfg_scale", 1) != 1: | |
| inputs_nega.update({"step1x_llm_embedding": embs[1:2], "step1x_mask": masks[1:2], "step1x_reference_latents": image}) | |
| return inputs_shared, inputs_posi, inputs_nega | |
| class FluxImageUnit_TeaCache(PipelineUnit): | |
| def __init__(self): | |
| super().__init__(input_params=("num_inference_steps","tea_cache_l1_thresh")) | |
| def process(self, pipe: FluxImagePipeline, num_inference_steps, tea_cache_l1_thresh): | |
| if tea_cache_l1_thresh is None: | |
| return {} | |
| else: | |
| return {"tea_cache": TeaCache(num_inference_steps=num_inference_steps, rel_l1_thresh=tea_cache_l1_thresh)} | |
| class FluxImageUnit_Flex(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| input_params=("latents", "flex_inpaint_image", "flex_inpaint_mask", "flex_control_image", "flex_control_strength", "flex_control_stop", "tiled", "tile_size", "tile_stride"), | |
| onload_model_names=("vae_encoder",) | |
| ) | |
| def process(self, pipe: FluxImagePipeline, latents, flex_inpaint_image, flex_inpaint_mask, flex_control_image, flex_control_strength, flex_control_stop, tiled, tile_size, tile_stride): | |
| if pipe.dit.input_dim == 196: | |
| if flex_control_stop is None: | |
| flex_control_stop = 1 | |
| pipe.load_models_to_device(self.onload_model_names) | |
| if flex_inpaint_image is None: | |
| flex_inpaint_image = torch.zeros_like(latents) | |
| else: | |
| flex_inpaint_image = pipe.preprocess_image(flex_inpaint_image).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| flex_inpaint_image = pipe.vae_encoder(flex_inpaint_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) | |
| if flex_inpaint_mask is None: | |
| flex_inpaint_mask = torch.ones_like(latents)[:, 0:1, :, :] | |
| else: | |
| flex_inpaint_mask = flex_inpaint_mask.resize((latents.shape[3], latents.shape[2])) | |
| flex_inpaint_mask = pipe.preprocess_image(flex_inpaint_mask).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| flex_inpaint_mask = (flex_inpaint_mask[:, 0:1, :, :] + 1) / 2 | |
| flex_inpaint_image = flex_inpaint_image * (1 - flex_inpaint_mask) | |
| if flex_control_image is None: | |
| flex_control_image = torch.zeros_like(latents) | |
| else: | |
| flex_control_image = pipe.preprocess_image(flex_control_image).to(device=pipe.device, dtype=pipe.torch_dtype) | |
| flex_control_image = pipe.vae_encoder(flex_control_image, tiled=tiled, tile_size=tile_size, tile_stride=tile_stride) * flex_control_strength | |
| flex_condition = torch.concat([flex_inpaint_image, flex_inpaint_mask, flex_control_image], dim=1) | |
| flex_uncondition = torch.concat([flex_inpaint_image, flex_inpaint_mask, torch.zeros_like(flex_control_image)], dim=1) | |
| flex_control_stop_timestep = pipe.scheduler.timesteps[int(flex_control_stop * (len(pipe.scheduler.timesteps) - 1))] | |
| return {"flex_condition": flex_condition, "flex_uncondition": flex_uncondition, "flex_control_stop_timestep": flex_control_stop_timestep} | |
| else: | |
| return {} | |
| class FluxImageUnit_InfiniteYou(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| input_params=("infinityou_id_image", "infinityou_guidance"), | |
| onload_model_names=("infinityou_processor",) | |
| ) | |
| def process(self, pipe: FluxImagePipeline, infinityou_id_image, infinityou_guidance): | |
| pipe.load_models_to_device("infinityou_processor") | |
| if infinityou_id_image is not None: | |
| return pipe.infinityou_processor.prepare_infinite_you(pipe.image_proj_model, infinityou_id_image, infinityou_guidance, pipe.device) | |
| else: | |
| return {} | |
| class FluxImageUnit_ValueControl(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| seperate_cfg=True, | |
| input_params_posi={"prompt_emb": "prompt_emb", "text_ids": "text_ids"}, | |
| input_params_nega={"prompt_emb": "prompt_emb", "text_ids": "text_ids"}, | |
| input_params=("value_controller_inputs",), | |
| onload_model_names=("value_controller",) | |
| ) | |
| def add_to_text_embedding(self, prompt_emb, text_ids, value_emb): | |
| prompt_emb = torch.concat([prompt_emb, value_emb], dim=1) | |
| extra_text_ids = torch.zeros((value_emb.shape[0], value_emb.shape[1], 3), device=value_emb.device, dtype=value_emb.dtype) | |
| text_ids = torch.concat([text_ids, extra_text_ids], dim=1) | |
| return prompt_emb, text_ids | |
| def process(self, pipe: FluxImagePipeline, prompt_emb, text_ids, value_controller_inputs): | |
| if value_controller_inputs is None: | |
| return {} | |
| if not isinstance(value_controller_inputs, list): | |
| value_controller_inputs = [value_controller_inputs] | |
| value_controller_inputs = torch.tensor(value_controller_inputs).to(dtype=pipe.torch_dtype, device=pipe.device) | |
| pipe.load_models_to_device(["value_controller"]) | |
| value_emb = pipe.value_controller(value_controller_inputs, pipe.torch_dtype) | |
| value_emb = value_emb.unsqueeze(0) | |
| prompt_emb, text_ids = self.add_to_text_embedding(prompt_emb, text_ids, value_emb) | |
| return {"prompt_emb": prompt_emb, "text_ids": text_ids} | |
| class InfinitYou(torch.nn.Module): | |
| def __init__(self, device="cuda", torch_dtype=torch.bfloat16): | |
| super().__init__() | |
| from facexlib.recognition import init_recognition_model | |
| from insightface.app import FaceAnalysis | |
| self.device = device | |
| self.torch_dtype = torch_dtype | |
| insightface_root_path = 'models/ByteDance/InfiniteYou/supports/insightface' | |
| self.app_640 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| self.app_640.prepare(ctx_id=0, det_size=(640, 640)) | |
| self.app_320 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| self.app_320.prepare(ctx_id=0, det_size=(320, 320)) | |
| self.app_160 = FaceAnalysis(name='antelopev2', root=insightface_root_path, providers=['CUDAExecutionProvider', 'CPUExecutionProvider']) | |
| self.app_160.prepare(ctx_id=0, det_size=(160, 160)) | |
| self.arcface_model = init_recognition_model('arcface', device=self.device).to(torch_dtype) | |
| def _detect_face(self, id_image_cv2): | |
| face_info = self.app_640.get(id_image_cv2) | |
| if len(face_info) > 0: | |
| return face_info | |
| face_info = self.app_320.get(id_image_cv2) | |
| if len(face_info) > 0: | |
| return face_info | |
| face_info = self.app_160.get(id_image_cv2) | |
| return face_info | |
| def extract_arcface_bgr_embedding(self, in_image, landmark, device): | |
| from insightface.utils import face_align | |
| arc_face_image = face_align.norm_crop(in_image, landmark=np.array(landmark), image_size=112) | |
| arc_face_image = torch.from_numpy(arc_face_image).unsqueeze(0).permute(0, 3, 1, 2) / 255. | |
| arc_face_image = 2 * arc_face_image - 1 | |
| arc_face_image = arc_face_image.contiguous().to(device=device, dtype=self.torch_dtype) | |
| face_emb = self.arcface_model(arc_face_image)[0] # [512], normalized | |
| return face_emb | |
| def prepare_infinite_you(self, model, id_image, infinityou_guidance, device): | |
| import cv2 | |
| if id_image is None: | |
| return {'id_emb': None} | |
| id_image_cv2 = cv2.cvtColor(np.array(id_image), cv2.COLOR_RGB2BGR) | |
| face_info = self._detect_face(id_image_cv2) | |
| if len(face_info) == 0: | |
| raise ValueError('No face detected in the input ID image') | |
| landmark = sorted(face_info, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1]['kps'] # only use the maximum face | |
| id_emb = self.extract_arcface_bgr_embedding(id_image_cv2, landmark, device) | |
| id_emb = model(id_emb.unsqueeze(0).reshape([1, -1, 512]).to(dtype=self.torch_dtype)) | |
| infinityou_guidance = torch.Tensor([infinityou_guidance]).to(device=device, dtype=self.torch_dtype) | |
| return {'id_emb': id_emb, 'infinityou_guidance': infinityou_guidance} | |
| class FluxImageUnit_LoRAEncode(PipelineUnit): | |
| def __init__(self): | |
| super().__init__( | |
| take_over=True, | |
| onload_model_names=("lora_encoder",) | |
| ) | |
| def parse_lora_encoder_inputs(self, lora_encoder_inputs): | |
| if not isinstance(lora_encoder_inputs, list): | |
| lora_encoder_inputs = [lora_encoder_inputs] | |
| lora_configs = [] | |
| for lora_encoder_input in lora_encoder_inputs: | |
| if isinstance(lora_encoder_input, str): | |
| lora_encoder_input = ModelConfig(path=lora_encoder_input) | |
| lora_encoder_input.download_if_necessary() | |
| lora_configs.append(lora_encoder_input) | |
| return lora_configs | |
| def load_lora(self, lora_config, dtype, device): | |
| loader = FluxLoRALoader(torch_dtype=dtype, device=device) | |
| lora = load_state_dict(lora_config.path, torch_dtype=dtype, device=device) | |
| lora = loader.convert_state_dict(lora) | |
| return lora | |
| def lora_embedding(self, pipe, lora_encoder_inputs): | |
| lora_emb = [] | |
| for lora_config in self.parse_lora_encoder_inputs(lora_encoder_inputs): | |
| lora = self.load_lora(lora_config, pipe.torch_dtype, pipe.device) | |
| lora_emb.append(pipe.lora_encoder(lora)) | |
| lora_emb = torch.concat(lora_emb, dim=1) | |
| return lora_emb | |
| def add_to_text_embedding(self, prompt_emb, text_ids, lora_emb): | |
| prompt_emb = torch.concat([prompt_emb, lora_emb], dim=1) | |
| extra_text_ids = torch.zeros((lora_emb.shape[0], lora_emb.shape[1], 3), device=lora_emb.device, dtype=lora_emb.dtype) | |
| text_ids = torch.concat([text_ids, extra_text_ids], dim=1) | |
| return prompt_emb, text_ids | |
| def process(self, pipe: FluxImagePipeline, inputs_shared, inputs_posi, inputs_nega): | |
| if inputs_shared.get("lora_encoder_inputs", None) is None: | |
| return inputs_shared, inputs_posi, inputs_nega | |
| # Encode | |
| pipe.load_models_to_device(["lora_encoder"]) | |
| lora_encoder_inputs = inputs_shared["lora_encoder_inputs"] | |
| lora_emb = self.lora_embedding(pipe, lora_encoder_inputs) | |
| # Scale | |
| lora_encoder_scale = inputs_shared.get("lora_encoder_scale", None) | |
| if lora_encoder_scale is not None: | |
| lora_emb = lora_emb * lora_encoder_scale | |
| # Add to prompt embedding | |
| inputs_posi["prompt_emb"], inputs_posi["text_ids"] = self.add_to_text_embedding( | |
| inputs_posi["prompt_emb"], inputs_posi["text_ids"], lora_emb) | |
| return inputs_shared, inputs_posi, inputs_nega | |
| class TeaCache: | |
| def __init__(self, num_inference_steps, rel_l1_thresh): | |
| self.num_inference_steps = num_inference_steps | |
| self.step = 0 | |
| self.accumulated_rel_l1_distance = 0 | |
| self.previous_modulated_input = None | |
| self.rel_l1_thresh = rel_l1_thresh | |
| self.previous_residual = None | |
| self.previous_hidden_states = None | |
| def check(self, dit: FluxDiT, hidden_states, conditioning): | |
| inp = hidden_states.clone() | |
| temb_ = conditioning.clone() | |
| modulated_inp, _, _, _, _ = dit.blocks[0].norm1_a(inp, emb=temb_) | |
| if self.step == 0 or self.step == self.num_inference_steps - 1: | |
| should_calc = True | |
| self.accumulated_rel_l1_distance = 0 | |
| else: | |
| coefficients = [4.98651651e+02, -2.83781631e+02, 5.58554382e+01, -3.82021401e+00, 2.64230861e-01] | |
| rescale_func = np.poly1d(coefficients) | |
| self.accumulated_rel_l1_distance += rescale_func(((modulated_inp-self.previous_modulated_input).abs().mean() / self.previous_modulated_input.abs().mean()).cpu().item()) | |
| if self.accumulated_rel_l1_distance < self.rel_l1_thresh: | |
| should_calc = False | |
| else: | |
| should_calc = True | |
| self.accumulated_rel_l1_distance = 0 | |
| self.previous_modulated_input = modulated_inp | |
| self.step += 1 | |
| if self.step == self.num_inference_steps: | |
| self.step = 0 | |
| if should_calc: | |
| self.previous_hidden_states = hidden_states.clone() | |
| return not should_calc | |
| def store(self, hidden_states): | |
| self.previous_residual = hidden_states - self.previous_hidden_states | |
| self.previous_hidden_states = None | |
| def update(self, hidden_states): | |
| hidden_states = hidden_states + self.previous_residual | |
| return hidden_states | |
| def model_fn_flux_image( | |
| dit: FluxDiT, | |
| controlnet=None, | |
| step1x_connector=None, | |
| latents=None, | |
| timestep=None, | |
| prompt_emb=None, | |
| pooled_prompt_emb=None, | |
| guidance=None, | |
| text_ids=None, | |
| image_ids=None, | |
| kontext_latents=None, | |
| kontext_image_ids=None, | |
| controlnet_inputs=None, | |
| controlnet_conditionings=None, | |
| tiled=False, | |
| tile_size=128, | |
| tile_stride=64, | |
| entity_prompt_emb=None, | |
| entity_masks=None, | |
| ipadapter_kwargs_list={}, | |
| id_emb=None, | |
| infinityou_guidance=None, | |
| flex_condition=None, | |
| flex_uncondition=None, | |
| flex_control_stop_timestep=None, | |
| step1x_llm_embedding=None, | |
| step1x_mask=None, | |
| step1x_reference_latents=None, | |
| tea_cache: TeaCache = None, | |
| progress_id=0, | |
| num_inference_steps=1, | |
| use_gradient_checkpointing=False, | |
| use_gradient_checkpointing_offload=False, | |
| **kwargs | |
| ): | |
| if tiled: | |
| def flux_forward_fn(hl, hr, wl, wr): | |
| tiled_controlnet_conditionings = [f[:, :, hl: hr, wl: wr] for f in controlnet_conditionings] if controlnet_conditionings is not None else None | |
| return model_fn_flux_image( | |
| dit=dit, | |
| controlnet=controlnet, | |
| latents=latents[:, :, hl: hr, wl: wr], | |
| timestep=timestep, | |
| prompt_emb=prompt_emb, | |
| pooled_prompt_emb=pooled_prompt_emb, | |
| guidance=guidance, | |
| text_ids=text_ids, | |
| image_ids=None, | |
| controlnet_inputs=controlnet_inputs, | |
| controlnet_conditionings=tiled_controlnet_conditionings, | |
| tiled=False, | |
| **kwargs | |
| ) | |
| return FastTileWorker().tiled_forward( | |
| flux_forward_fn, | |
| latents, | |
| tile_size=tile_size, | |
| tile_stride=tile_stride, | |
| tile_device=latents.device, | |
| tile_dtype=latents.dtype | |
| ) | |
| hidden_states = latents | |
| # ControlNet | |
| if controlnet is not None and controlnet_conditionings is not None: | |
| controlnet_extra_kwargs = { | |
| "hidden_states": hidden_states, | |
| "timestep": timestep, | |
| "prompt_emb": prompt_emb, | |
| "pooled_prompt_emb": pooled_prompt_emb, | |
| "guidance": guidance, | |
| "text_ids": text_ids, | |
| "image_ids": image_ids, | |
| "controlnet_inputs": controlnet_inputs, | |
| "tiled": tiled, | |
| "tile_size": tile_size, | |
| "tile_stride": tile_stride, | |
| "progress_id": progress_id, | |
| "num_inference_steps": num_inference_steps, | |
| } | |
| if id_emb is not None: | |
| controlnet_text_ids = torch.zeros(id_emb.shape[0], id_emb.shape[1], 3).to(device=hidden_states.device, dtype=hidden_states.dtype) | |
| controlnet_extra_kwargs.update({"prompt_emb": id_emb, 'text_ids': controlnet_text_ids, 'guidance': infinityou_guidance}) | |
| controlnet_res_stack, controlnet_single_res_stack = controlnet( | |
| controlnet_conditionings, **controlnet_extra_kwargs | |
| ) | |
| # Flex | |
| if flex_condition is not None: | |
| if timestep.tolist()[0] >= flex_control_stop_timestep: | |
| hidden_states = torch.concat([hidden_states, flex_condition], dim=1) | |
| else: | |
| hidden_states = torch.concat([hidden_states, flex_uncondition], dim=1) | |
| # Step1x | |
| if step1x_llm_embedding is not None: | |
| prompt_emb, pooled_prompt_emb = step1x_connector(step1x_llm_embedding, timestep / 1000, step1x_mask) | |
| text_ids = torch.zeros((1, prompt_emb.shape[1], 3), dtype=prompt_emb.dtype, device=prompt_emb.device) | |
| if image_ids is None: | |
| image_ids = dit.prepare_image_ids(hidden_states) | |
| conditioning = dit.time_embedder(timestep, hidden_states.dtype) + dit.pooled_text_embedder(pooled_prompt_emb) | |
| if dit.guidance_embedder is not None: | |
| guidance = guidance * 1000 | |
| conditioning = conditioning + dit.guidance_embedder(guidance, hidden_states.dtype) | |
| height, width = hidden_states.shape[-2:] | |
| hidden_states = dit.patchify(hidden_states) | |
| # Kontext | |
| if kontext_latents is not None: | |
| image_ids = torch.concat([image_ids, kontext_image_ids], dim=-2) | |
| hidden_states = torch.concat([hidden_states, kontext_latents], dim=1) | |
| # Step1x | |
| if step1x_reference_latents is not None: | |
| step1x_reference_image_ids = dit.prepare_image_ids(step1x_reference_latents) | |
| step1x_reference_latents = dit.patchify(step1x_reference_latents) | |
| image_ids = torch.concat([image_ids, step1x_reference_image_ids], dim=-2) | |
| hidden_states = torch.concat([hidden_states, step1x_reference_latents], dim=1) | |
| hidden_states = dit.x_embedder(hidden_states) | |
| # EliGen | |
| if entity_prompt_emb is not None and entity_masks is not None: | |
| prompt_emb, image_rotary_emb, attention_mask = dit.process_entity_masks(hidden_states, prompt_emb, entity_prompt_emb, entity_masks, text_ids, image_ids) | |
| else: | |
| prompt_emb = dit.context_embedder(prompt_emb) | |
| image_rotary_emb = dit.pos_embedder(torch.cat((text_ids, image_ids), dim=1)) | |
| attention_mask = None | |
| # TeaCache | |
| if tea_cache is not None: | |
| tea_cache_update = tea_cache.check(dit, hidden_states, conditioning) | |
| else: | |
| tea_cache_update = False | |
| if tea_cache_update: | |
| hidden_states = tea_cache.update(hidden_states) | |
| else: | |
| # Joint Blocks | |
| for block_id, block in enumerate(dit.blocks): | |
| hidden_states, prompt_emb = gradient_checkpoint_forward( | |
| block, | |
| use_gradient_checkpointing, | |
| use_gradient_checkpointing_offload, | |
| hidden_states, | |
| prompt_emb, | |
| conditioning, | |
| image_rotary_emb, | |
| attention_mask, | |
| ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id, None), | |
| ) | |
| # ControlNet | |
| if controlnet is not None and controlnet_conditionings is not None and controlnet_res_stack is not None: | |
| if kontext_latents is None: | |
| hidden_states = hidden_states + controlnet_res_stack[block_id] | |
| else: | |
| hidden_states[:, :-kontext_latents.shape[1]] = hidden_states[:, :-kontext_latents.shape[1]] + controlnet_res_stack[block_id] | |
| # Single Blocks | |
| hidden_states = torch.cat([prompt_emb, hidden_states], dim=1) | |
| num_joint_blocks = len(dit.blocks) | |
| for block_id, block in enumerate(dit.single_blocks): | |
| hidden_states, prompt_emb = gradient_checkpoint_forward( | |
| block, | |
| use_gradient_checkpointing, | |
| use_gradient_checkpointing_offload, | |
| hidden_states, | |
| prompt_emb, | |
| conditioning, | |
| image_rotary_emb, | |
| attention_mask, | |
| ipadapter_kwargs_list=ipadapter_kwargs_list.get(block_id + num_joint_blocks, None), | |
| ) | |
| # ControlNet | |
| if controlnet is not None and controlnet_conditionings is not None and controlnet_single_res_stack is not None: | |
| if kontext_latents is None: | |
| hidden_states[:, prompt_emb.shape[1]:] = hidden_states[:, prompt_emb.shape[1]:] + controlnet_single_res_stack[block_id] | |
| else: | |
| hidden_states[:, prompt_emb.shape[1]:-kontext_latents.shape[1]] = hidden_states[:, prompt_emb.shape[1]:-kontext_latents.shape[1]] + controlnet_single_res_stack[block_id] | |
| hidden_states = hidden_states[:, prompt_emb.shape[1]:] | |
| if tea_cache is not None: | |
| tea_cache.store(hidden_states) | |
| hidden_states = dit.final_norm_out(hidden_states, conditioning) | |
| hidden_states = dit.final_proj_out(hidden_states) | |
| # Step1x | |
| if step1x_reference_latents is not None: | |
| hidden_states = hidden_states[:, :hidden_states.shape[1] // 2] | |
| # Kontext | |
| if kontext_latents is not None: | |
| hidden_states = hidden_states[:, :-kontext_latents.shape[1]] | |
| hidden_states = dit.unpatchify(hidden_states, height, width) | |
| return hidden_states | |