halocine-demoz / diffsynth /models /flux_lora_encoder.py
Yhmeng1106's picture
Initial commit
c1a26d7
import torch
from .sd_text_encoder import CLIPEncoderLayer
class LoRALayerBlock(torch.nn.Module):
def __init__(self, L, dim_in, dim_out):
super().__init__()
self.x = torch.nn.Parameter(torch.randn(1, L, dim_in))
self.layer_norm = torch.nn.LayerNorm(dim_out)
def forward(self, lora_A, lora_B):
x = self.x @ lora_A.T @ lora_B.T
x = self.layer_norm(x)
return x
class LoRAEmbedder(torch.nn.Module):
def __init__(self, lora_patterns=None, L=1, out_dim=2048):
super().__init__()
if lora_patterns is None:
lora_patterns = self.default_lora_patterns()
model_dict = {}
for lora_pattern in lora_patterns:
name, dim = lora_pattern["name"], lora_pattern["dim"]
model_dict[name.replace(".", "___")] = LoRALayerBlock(L, dim[0], dim[1])
self.model_dict = torch.nn.ModuleDict(model_dict)
proj_dict = {}
for lora_pattern in lora_patterns:
layer_type, dim = lora_pattern["type"], lora_pattern["dim"]
if layer_type not in proj_dict:
proj_dict[layer_type.replace(".", "___")] = torch.nn.Linear(dim[1], out_dim)
self.proj_dict = torch.nn.ModuleDict(proj_dict)
self.lora_patterns = lora_patterns
def default_lora_patterns(self):
lora_patterns = []
lora_dict = {
"attn.a_to_qkv": (3072, 9216), "attn.a_to_out": (3072, 3072), "ff_a.0": (3072, 12288), "ff_a.2": (12288, 3072), "norm1_a.linear": (3072, 18432),
"attn.b_to_qkv": (3072, 9216), "attn.b_to_out": (3072, 3072), "ff_b.0": (3072, 12288), "ff_b.2": (12288, 3072), "norm1_b.linear": (3072, 18432),
}
for i in range(19):
for suffix in lora_dict:
lora_patterns.append({
"name": f"blocks.{i}.{suffix}",
"dim": lora_dict[suffix],
"type": suffix,
})
lora_dict = {"to_qkv_mlp": (3072, 21504), "proj_out": (15360, 3072), "norm.linear": (3072, 9216)}
for i in range(38):
for suffix in lora_dict:
lora_patterns.append({
"name": f"single_blocks.{i}.{suffix}",
"dim": lora_dict[suffix],
"type": suffix,
})
return lora_patterns
def forward(self, lora):
lora_emb = []
for lora_pattern in self.lora_patterns:
name, layer_type = lora_pattern["name"], lora_pattern["type"]
lora_A = lora[name + ".lora_A.default.weight"]
lora_B = lora[name + ".lora_B.default.weight"]
lora_out = self.model_dict[name.replace(".", "___")](lora_A, lora_B)
lora_out = self.proj_dict[layer_type.replace(".", "___")](lora_out)
lora_emb.append(lora_out)
lora_emb = torch.concat(lora_emb, dim=1)
return lora_emb
class FluxLoRAEncoder(torch.nn.Module):
def __init__(self, embed_dim=4096, encoder_intermediate_size=8192, num_encoder_layers=1, num_embeds_per_lora=16, num_special_embeds=1):
super().__init__()
self.num_embeds_per_lora = num_embeds_per_lora
# embedder
self.embedder = LoRAEmbedder(L=num_embeds_per_lora, out_dim=embed_dim)
# encoders
self.encoders = torch.nn.ModuleList([CLIPEncoderLayer(embed_dim, encoder_intermediate_size, num_heads=32, head_dim=128) for _ in range(num_encoder_layers)])
# special embedding
self.special_embeds = torch.nn.Parameter(torch.randn(1, num_special_embeds, embed_dim))
self.num_special_embeds = num_special_embeds
# final layer
self.final_layer_norm = torch.nn.LayerNorm(embed_dim)
self.final_linear = torch.nn.Linear(embed_dim, embed_dim)
def forward(self, lora):
lora_embeds = self.embedder(lora)
special_embeds = self.special_embeds.to(dtype=lora_embeds.dtype, device=lora_embeds.device)
embeds = torch.concat([special_embeds, lora_embeds], dim=1)
for encoder_id, encoder in enumerate(self.encoders):
embeds = encoder(embeds)
embeds = embeds[:, :self.num_special_embeds]
embeds = self.final_layer_norm(embeds)
embeds = self.final_linear(embeds)
return embeds
@staticmethod
def state_dict_converter():
return FluxLoRAEncoderStateDictConverter()
class FluxLoRAEncoderStateDictConverter:
def from_civitai(self, state_dict):
return state_dict