Spaces:
Paused
Paused
File size: 28,006 Bytes
c1a26d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 |
import imageio, os, torch, warnings, torchvision, argparse, json
from peft import LoraConfig, inject_adapter_in_model
from PIL import Image
import pandas as pd
from tqdm import tqdm
from accelerate import Accelerator
import glob, re, math
import time
class ImageDataset(torch.utils.data.Dataset):
def __init__(
self,
base_path=None, metadata_path=None,
max_pixels=1920*1080, height=None, width=None,
height_division_factor=16, width_division_factor=16,
data_file_keys=("image",),
image_file_extension=("jpg", "jpeg", "png", "webp"),
repeat=1,
args=None,
):
if args is not None:
base_path = args.dataset_base_path
metadata_path = args.dataset_metadata_path
height = args.height
width = args.width
max_pixels = args.max_pixels
data_file_keys = args.data_file_keys.split(",")
repeat = args.dataset_repeat
self.base_path = base_path
self.max_pixels = max_pixels
self.height = height
self.width = width
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
self.data_file_keys = data_file_keys
self.image_file_extension = image_file_extension
self.repeat = repeat
if height is not None and width is not None:
print("Height and width are fixed. Setting `dynamic_resolution` to False.")
self.dynamic_resolution = False
elif height is None and width is None:
print("Height and width are none. Setting `dynamic_resolution` to True.")
self.dynamic_resolution = True
if metadata_path is None:
print("No metadata. Trying to generate it.")
metadata = self.generate_metadata(base_path)
print(f"{len(metadata)} lines in metadata.")
self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
elif metadata_path.endswith(".json"):
with open(metadata_path, "r") as f:
metadata = json.load(f)
self.data = metadata
else:
metadata = pd.read_csv(metadata_path)
self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
def generate_metadata(self, folder):
image_list, prompt_list = [], []
file_set = set(os.listdir(folder))
for file_name in file_set:
if "." not in file_name:
continue
file_ext_name = file_name.split(".")[-1].lower()
file_base_name = file_name[:-len(file_ext_name)-1]
if file_ext_name not in self.image_file_extension:
continue
prompt_file_name = file_base_name + ".txt"
if prompt_file_name not in file_set:
continue
with open(os.path.join(folder, prompt_file_name), "r", encoding="utf-8") as f:
prompt = f.read().strip()
image_list.append(file_name)
prompt_list.append(prompt)
metadata = pd.DataFrame()
metadata["image"] = image_list
metadata["prompt"] = prompt_list
return metadata
def crop_and_resize(self, image, target_height, target_width):
width, height = image.size
scale = max(target_width / width, target_height / height)
image = torchvision.transforms.functional.resize(
image,
(round(height*scale), round(width*scale)),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
)
image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
return image
def get_height_width(self, image):
if self.dynamic_resolution:
width, height = image.size
if width * height > self.max_pixels:
scale = (width * height / self.max_pixels) ** 0.5
height, width = int(height / scale), int(width / scale)
height = height // self.height_division_factor * self.height_division_factor
width = width // self.width_division_factor * self.width_division_factor
else:
height, width = self.height, self.width
return height, width
def load_image(self, file_path):
image = Image.open(file_path).convert("RGB")
image = self.crop_and_resize(image, *self.get_height_width(image))
return image
def load_data(self, file_path):
return self.load_image(file_path)
def __getitem__(self, data_id):
data = self.data[data_id % len(self.data)].copy()
for key in self.data_file_keys:
if key in data:
path = os.path.join(self.base_path, data[key])
data[key] = self.load_data(path)
if data[key] is None:
warnings.warn(f"cannot load file {data[key]}.")
return None
return data
def __len__(self):
return len(self.data) * self.repeat
class VideoDataset(torch.utils.data.Dataset):
def __init__(
self,
base_path=None, metadata_path=None,
num_frames=81,
time_division_factor=4, time_division_remainder=1,
max_pixels=1920*1080, height=None, width=None,
height_division_factor=16, width_division_factor=16,
data_file_keys=("video_path",),
image_file_extension=("jpg", "jpeg", "png", "webp"),
video_file_extension=("mp4", "avi", "mov", "wmv", "mkv", "flv", "webm"),
repeat=1,
args=None,
):
if args is not None:
base_path = args.dataset_base_path
metadata_path = args.dataset_metadata_path
height = args.height
width = args.width
max_pixels = args.max_pixels
num_frames = args.num_frames
data_file_keys = args.data_file_keys.split(",")
repeat = args.dataset_repeat
self.base_path = base_path
self.num_frames = num_frames
self.time_division_factor = time_division_factor
self.time_division_remainder = time_division_remainder
self.max_pixels = max_pixels
self.height = height
self.width = width
self.height_division_factor = height_division_factor
self.width_division_factor = width_division_factor
self.data_file_keys = data_file_keys
self.image_file_extension = image_file_extension
self.video_file_extension = video_file_extension
self.repeat = repeat
if height is not None and width is not None:
print("Height and width are fixed. Setting `dynamic_resolution` to False.")
self.dynamic_resolution = False
elif height is None and width is None:
print("Height and width are none. Setting `dynamic_resolution` to True.")
self.dynamic_resolution = True
if metadata_path is None:
print("No metadata. Trying to generate it.")
metadata = self.generate_metadata(base_path)
print(f"{len(metadata)} lines in metadata.")
self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
elif metadata_path.endswith(".json"):
with open(metadata_path, "r") as f:
metadata = json.load(f)
self.data = metadata
else:
metadata = pd.read_csv(metadata_path)
self.data = [metadata.iloc[i].to_dict() for i in range(len(metadata))]
def generate_metadata(self, folder):
video_list, prompt_list = [], []
file_set = set(os.listdir(folder))
for file_name in file_set:
if "." not in file_name:
continue
file_ext_name = file_name.split(".")[-1].lower()
file_base_name = file_name[:-len(file_ext_name)-1]
if file_ext_name not in self.image_file_extension and file_ext_name not in self.video_file_extension:
continue
prompt_file_name = file_base_name + ".txt"
if prompt_file_name not in file_set:
continue
with open(os.path.join(folder, prompt_file_name), "r", encoding="utf-8") as f:
prompt = f.read().strip()
video_list.append(file_name)
prompt_list.append(prompt)
metadata = pd.DataFrame()
metadata["video"] = video_list
metadata["prompt"] = prompt_list
return metadata
def crop_and_resize(self, image, target_height, target_width):
width, height = image.size
scale = max(target_width / width, target_height / height)
image = torchvision.transforms.functional.resize(
image,
(round(height*scale), round(width*scale)),
interpolation=torchvision.transforms.InterpolationMode.BILINEAR
)
image = torchvision.transforms.functional.center_crop(image, (target_height, target_width))
return image
def get_height_width(self, image):
if self.dynamic_resolution:
width, height = image.size
if width * height > self.max_pixels:
scale = (width * height / self.max_pixels) ** 0.5
height, width = int(height / scale), int(width / scale)
height = height // self.height_division_factor * self.height_division_factor
width = width // self.width_division_factor * self.width_division_factor
else:
height, width = self.height, self.width
return height, width
def get_num_frames(self, reader):
num_frames = self.num_frames
if int(reader.count_frames()) < num_frames:
num_frames = int(reader.count_frames())
while num_frames > 1 and num_frames % self.time_division_factor != self.time_division_remainder:
num_frames -= 1
return num_frames
def load_video(self, file_path):
reader = imageio.get_reader(file_path)
num_frames = self.get_num_frames(reader)
frames = []
for frame_id in range(num_frames):
frame = reader.get_data(frame_id)
frame = Image.fromarray(frame)
frame = self.crop_and_resize(frame, *self.get_height_width(frame))
frames.append(frame)
frames.append(frame)
frames.append(frame)
frames.append(frame)
frames=frames[:-3]
reader.close()
return frames
def load_json(self, file_path):
with open(file_path, 'r') as f:
json_data = json.load(f)
num_shots = json_data["num_shots"]
shot_cut_frames = json_data["shot_cut_frames"]
return num_shots, shot_cut_frames
def load_image(self, file_path):
image = Image.open(file_path).convert("RGB")
image = self.crop_and_resize(image, *self.get_height_width(image))
frames = [image]
return frames
def is_image(self, file_path):
file_ext_name = file_path.split(".")[-1]
return file_ext_name.lower() in self.image_file_extension
def is_video(self, file_path):
file_ext_name = file_path.split(".")[-1]
return file_ext_name.lower() in self.video_file_extension
def is_json(self, file_path):
file_ext_name = file_path.split(".")[-1]
return file_ext_name.lower() == "json"
def load_data(self, file_path):
if self.is_image(file_path):
return self.load_image(file_path)
elif self.is_video(file_path):
return self.load_video(file_path)
elif self.is_json(file_path):
return self.load_json(file_path)
else:
return None
def __getitem__(self, data_id):
data = self.data[data_id % len(self.data)].copy()
for key in self.data_file_keys:
if key in data:
path = os.path.join(self.base_path, data[key])
data[key] = self.load_data(path)
if data[key] is None:
warnings.warn(f"cannot load file {data[key]}.")
return None
if key=="json_path":
num_shots, shot_cut_frames = self.load_json(path)
data["num_shots"] = num_shots
data["shot_cut_frames"] = shot_cut_frames
return data
def __len__(self):
return len(self.data) * self.repeat
class DiffusionTrainingModule(torch.nn.Module):
def __init__(self):
super().__init__()
def to(self, *args, **kwargs):
for name, model in self.named_children():
model.to(*args, **kwargs)
return self
def trainable_modules(self):
trainable_modules = filter(lambda p: p.requires_grad, self.parameters())
return trainable_modules
def trainable_param_names(self):
trainable_param_names = list(filter(lambda named_param: named_param[1].requires_grad, self.named_parameters()))
trainable_param_names = set([named_param[0] for named_param in trainable_param_names])
return trainable_param_names
def add_lora_to_model(self, model, target_modules, lora_rank, lora_alpha=None):
if lora_alpha is None:
lora_alpha = lora_rank
lora_config = LoraConfig(r=lora_rank, lora_alpha=lora_alpha, target_modules=target_modules)
model = inject_adapter_in_model(lora_config, model)
return model
def export_trainable_state_dict(self, state_dict, remove_prefix=None):
trainable_param_names = self.trainable_param_names()
state_dict = {name: param for name, param in state_dict.items() if name in trainable_param_names}
if remove_prefix is not None:
state_dict_ = {}
for name, param in state_dict.items():
if name.startswith(remove_prefix):
name = name[len(remove_prefix):]
state_dict_[name] = param
state_dict = state_dict_
return state_dict
class ModelLogger:
def __init__(self, output_path, remove_prefix_in_ckpt=None, state_dict_converter=lambda x:x, validation_config=None, save_every_n_steps=1000):
self.output_path = output_path
self.remove_prefix_in_ckpt = remove_prefix_in_ckpt
self.state_dict_converter = state_dict_converter
self.validation_config = validation_config
self.save_every_n_steps = save_every_n_steps
# Create subdirectories for clarity
self.resumable_path = os.path.join(output_path, "resumable")
self.portable_path = os.path.join(output_path, "portable")
self.validation_path = os.path.join(output_path, "validation")
os.makedirs(self.resumable_path, exist_ok=True)
os.makedirs(self.portable_path, exist_ok=True)
os.makedirs(self.validation_path, exist_ok=True)
def on_step_end(self, accelerator, model, global_step):
self.save_model(accelerator, model, f"step-{global_step}")
def on_epoch_end(self, accelerator, model, epoch_id):
accelerator.wait_for_everyone()
if accelerator.is_main_process:
state_dict = accelerator.get_state_dict(model)
state_dict = accelerator.unwrap_model(model).export_trainable_state_dict(state_dict, remove_prefix=self.remove_prefix_in_ckpt)
state_dict = self.state_dict_converter(state_dict)
os.makedirs(self.output_path, exist_ok=True)
path = os.path.join(self.output_path, f"epoch-{epoch_id}")
accelerator.save(state_dict, path, safe_serialization=True)
# def save_model(self, accelerator, model, file_name):
# accelerator.wait_for_everyone()
# # if accelerator.is_main_process:
# # state_dict = accelerator.get_state_dict(model)
# # state_dict = accelerator.unwrap_model(model).export_trainable_state_dict(state_dict, remove_prefix=self.remove_prefix_in_ckpt)
# # state_dict = self.state_dict_converter(state_dict)
# # os.makedirs(self.output_path, exist_ok=True)
# # path = os.path.join(self.output_path, file_name)
# # accelerator.save(state_dict, path, safe_serialization=True)
# os.makedirs(self.output_path, exist_ok=True)
# path = os.path.join(self.output_path, file_name)
# accelerator.save_state(path)
# accelerator.wait_for_everyone()
def save_model(self, accelerator, model, file_name):
accelerator.wait_for_everyone()
path = os.path.join(self.output_path, file_name)
if accelerator.is_main_process:
os.makedirs(path, exist_ok=True)
accelerator.wait_for_everyone()
accelerator.save_state(path)
def launch_training_task(
dataset: torch.utils.data.Dataset,
model: DiffusionTrainingModule,
model_logger: ModelLogger,
optimizer: torch.optim.Optimizer,
scheduler: torch.optim.lr_scheduler.LRScheduler,
num_epochs: int = 1,
gradient_accumulation_steps: int = 1,
resume_from_checkpoint: str = None,
save_every_n_steps: int = 1000,
mixed_precision: str = "bf16",
enabled_deepspeed: bool = False,
model_ds_config: str = None,
):
dataloader = torch.utils.data.DataLoader(dataset, shuffle=True,num_workers=1, collate_fn=lambda x: x[0])
if enabled_deepspeed:
from accelerate.utils import DeepSpeedPlugin
accelerator = Accelerator(
deepspeed_plugins=DeepSpeedPlugin(hf_ds_config=model_ds_config),
gradient_accumulation_steps=gradient_accumulation_steps,
)
if accelerator.is_main_process:
print("Setting up deepspeed zero2 optimization done.")
else:
accelerator = Accelerator(gradient_accumulation_steps=gradient_accumulation_steps)
model, optimizer, dataloader, scheduler = accelerator.prepare(model, optimizer, dataloader, scheduler)
# Resuming logic
global_step = 0
# if resume_from_checkpoint:
# print(f"Resuming from checkpoint: {resume_from_checkpoint}")
# accelerator.load_state(resume_from_checkpoint)
# try:
# path = os.path.basename(resume_from_checkpoint)
# global_step = int(re.search(r"step-(\d+)", path).group(1))
# print(f"Restored global_step to {global_step}")
# except (AttributeError, ValueError):
# print("Could not parse global_step from checkpoint path. Starting from 0.")
# global_step = 0
if resume_from_checkpoint is not None:
accelerator.load_state(resume_from_checkpoint)
global_step = int(re.search(r"step-(\d+)", resume_from_checkpoint).group(1))
num_update_steps_per_epoch = math.ceil(len(dataloader) / gradient_accumulation_steps)
starting_epoch = global_step // num_update_steps_per_epoch if num_update_steps_per_epoch > 0 else 0
for epoch_id in range(starting_epoch, num_epochs):
for data in tqdm(dataloader, desc=f"Epoch {epoch_id}"):
with accelerator.accumulate(model):
optimizer.zero_grad()
loss = model(data)
accelerator.backward(loss)
optimizer.step()
scheduler.step()
if accelerator.sync_gradients:
if global_step == 0 or global_step % save_every_n_steps == 0:
model_logger.on_step_end(accelerator, model, global_step)
global_step += 1
# model_logger.on_epoch_end(accelerator, model, epoch_id)
def launch_data_process_task(model: DiffusionTrainingModule, dataset, output_path="./models"):
dataloader = torch.utils.data.DataLoader(dataset, shuffle=False, num_workers=1, collate_fn=lambda x: x[0])
accelerator = Accelerator()
model, dataloader = accelerator.prepare(model, dataloader)
os.makedirs(os.path.join(output_path, "data_cache"), exist_ok=True)
for data_id, data in enumerate(tqdm(dataloader)):
with torch.no_grad():
inputs = model.forward_preprocess(data)
inputs = {key: inputs[key] for key in model.model_input_keys if key in inputs}
torch.save(inputs, os.path.join(output_path, "data_cache", f"{data_id}.pth"))
def wan_parser():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--dataset_base_path", type=str, default="", required=True, help="Base path of the dataset.")
parser.add_argument("--dataset_metadata_path", type=str, default=None, help="Path to the metadata file of the dataset.")
parser.add_argument("--max_pixels", type=int, default=1280*720, help="Maximum number of pixels per frame, used for dynamic resolution..")
parser.add_argument("--height", type=int, default=None, help="Height of images or videos. Leave `height` and `width` empty to enable dynamic resolution.")
parser.add_argument("--width", type=int, default=None, help="Width of images or videos. Leave `height` and `width` empty to enable dynamic resolution.")
parser.add_argument("--num_frames", type=int, default=81, help="Number of frames per video. Frames are sampled from the video prefix.")
parser.add_argument("--data_file_keys", type=str, default="image,video", help="Data file keys in the metadata. Comma-separated.")
parser.add_argument("--dataset_repeat", type=int, default=1, help="Number of times to repeat the dataset per epoch.")
parser.add_argument("--model_paths", type=str, default=None, help="Paths to load models. In JSON format.")
parser.add_argument("--model_id_with_origin_paths", type=str, default=None, help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.")
parser.add_argument("--output_path", type=str, default="./models", help="Output save path.")
parser.add_argument("--remove_prefix_in_ckpt", type=str, default="pipe.dit.", help="Remove prefix in ckpt.")
parser.add_argument("--trainable_models", type=str, default=None, help="Models to train, e.g., dit, vae, text_encoder.")
parser.add_argument("--lora_base_model", type=str, default=None, help="Which model LoRA is added to.")
parser.add_argument("--lora_target_modules", type=str, default="q,k,v,o,ffn.0,ffn.2", help="Which layers LoRA is added to.")
parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.")
parser.add_argument("--extra_inputs", default=None, help="Additional model inputs, comma-separated.")
parser.add_argument("--use_gradient_checkpointing_offload", default=False, action="store_true", help="Whether to offload gradient checkpointing to CPU memory.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps.")
parser.add_argument("--max_timestep_boundary", type=float, default=1.0, help="Max timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).")
parser.add_argument("--min_timestep_boundary", type=float, default=0.0, help="Min timestep boundary (for mixed models, e.g., Wan-AI/Wan2.2-I2V-A14B).")
parser.add_argument("--save_every_n_steps", type=int, default=1000, help="Save a checkpoint every N steps.")
parser.add_argument("--validation_config_path", type=str, default=None, help="Path to a JSON file containing a list of validation configurations.")
parser.add_argument("--resume_from_checkpoint", type=str, default=None, help="Path to a checkpoint folder to resume from. Set to 'latest' to automatically find the latest.")
parser.add_argument("--max_shots", type=int, default=20, help="Max shots.")
parser.add_argument("--use_shot_embedding", type=bool, default=False, help="Use shot embedding.")
parser.add_argument("--shot_embedding_init", type=str, default="normal", help="Shot embedding initialization method.")
parser.add_argument("--enabled_deepspeed", default=False, action="store_true", help="Whether to use deepspeed.")
parser.add_argument("--model_ds_config", type=str, default=None, help="Path to a DeepSpeed config file.")
parser.add_argument("--mixed_precision", type=str, default="bf16", help="Mixed precision.")
# parser.add_argument("--use_shot_mask", default=False, action="store_true", help="Whether to use shot mask.")
# parser.add_argument("--shot_mask_type", type=str, default="id", choices=[None,"id", "normalized", "alternating"])
return parser
def flux_parser():
parser = argparse.ArgumentParser(description="Simple example of a training script.")
parser.add_argument("--dataset_base_path", type=str, default="", required=True, help="Base path of the dataset.")
parser.add_argument("--dataset_metadata_path", type=str, default=None, help="Path to the metadata file of the dataset.")
parser.add_argument("--max_pixels", type=int, default=1024*1024, help="Maximum number of pixels per frame, used for dynamic resolution..")
parser.add_argument("--height", type=int, default=None, help="Height of images. Leave `height` and `width` empty to enable dynamic resolution.")
parser.add_argument("--width", type=int, default=None, help="Width of images. Leave `height` and `width` empty to enable dynamic resolution.")
parser.add_argument("--data_file_keys", type=str, default="image", help="Data file keys in the metadata. Comma-separated.")
parser.add_argument("--dataset_repeat", type=int, default=1, help="Number of times to repeat the dataset per epoch.")
parser.add_argument("--model_paths", type=str, default=None, help="Paths to load models. In JSON format.")
parser.add_argument("--model_id_with_origin_paths", type=str, default=None, help="Model ID with origin paths, e.g., Wan-AI/Wan2.1-T2V-1.3B:diffusion_pytorch_model*.safetensors. Comma-separated.")
parser.add_argument("--learning_rate", type=float, default=1e-4, help="Learning rate.")
parser.add_argument("--num_epochs", type=int, default=1, help="Number of epochs.")
parser.add_argument("--output_path", type=str, default="./models", help="Output save path.")
parser.add_argument("--remove_prefix_in_ckpt", type=str, default="pipe.dit.", help="Remove prefix in ckpt.")
parser.add_argument("--trainable_models", type=str, default=None, help="Models to train, e.g., dit, vae, text_encoder.")
parser.add_argument("--lora_base_model", type=str, default=None, help="Which model LoRA is added to.")
parser.add_argument("--lora_target_modules", type=str, default="q,k,v,o,ffn.0,ffn.2", help="Which layers LoRA is added to.")
parser.add_argument("--lora_rank", type=int, default=32, help="Rank of LoRA.")
parser.add_argument("--extra_inputs", default=None, help="Additional model inputs, comma-separated.")
parser.add_argument("--align_to_opensource_format", default=False, action="store_true", help="Whether to align the lora format to opensource format. Only for DiT's LoRA.")
parser.add_argument("--use_gradient_checkpointing", default=False, action="store_true", help="Whether to use gradient checkpointing.")
parser.add_argument("--use_gradient_checkpointing_offload", default=False, action="store_true", help="Whether to offload gradient checkpointing to CPU memory.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1, help="Gradient accumulation steps.")
return parser
|