Spaces:
Runtime error
Runtime error
File size: 14,645 Bytes
eeb0f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 |
"""
Health Analyzer - Comprehensive health analysis and disease risk prediction
Analyzes user health data to provide insights and predictions
"""
from typing import List, Dict, Any, Optional
from datetime import datetime, timedelta
import math
from health_data import HealthContext
class HealthAnalyzer:
"""
Comprehensive health analysis and disease risk prediction
Provides health scoring, risk assessment, and preventive recommendations
"""
def __init__(self, health_context: HealthContext):
self.health_context = health_context
self.user_id = health_context.user_id
# ===== Health Status Analysis =====
def analyze_health_status(self) -> Dict[str, Any]:
"""Comprehensive health status analysis"""
profile = self.health_context.get_user_profile()
analysis = {
'timestamp': datetime.now().isoformat(),
'bmi_status': self._analyze_bmi(profile),
'activity_status': self._analyze_activity(),
'symptom_status': self._analyze_symptoms(),
'nutrition_status': self._analyze_nutrition(),
'mental_health_status': self._analyze_mental_health(),
'overall_health_score': 0.0
}
# Calculate overall health score
scores = [
analysis['bmi_status'].get('score', 0.5),
analysis['activity_status'].get('score', 0.5),
analysis['symptom_status'].get('score', 0.5),
analysis['nutrition_status'].get('score', 0.5),
analysis['mental_health_status'].get('score', 0.5)
]
analysis['overall_health_score'] = round(sum(scores) / len(scores), 2)
return analysis
def _analyze_bmi(self, profile) -> Dict[str, Any]:
"""Analyze BMI status"""
if not profile.bmi:
return {'status': 'unknown', 'score': 0.5, 'recommendation': 'Calculate BMI first'}
bmi = profile.bmi
if bmi < 18.5:
return {
'status': 'underweight',
'score': 0.6,
'bmi': bmi,
'recommendation': 'Consider healthy weight gain with proper nutrition'
}
elif bmi < 25:
return {
'status': 'normal',
'score': 1.0,
'bmi': bmi,
'recommendation': 'Maintain current weight with balanced diet and exercise'
}
elif bmi < 30:
return {
'status': 'overweight',
'score': 0.7,
'bmi': bmi,
'recommendation': 'Gradual weight loss through diet and exercise'
}
else:
return {
'status': 'obese',
'score': 0.4,
'bmi': bmi,
'recommendation': 'Consult healthcare provider for weight management plan'
}
def _analyze_activity(self) -> Dict[str, Any]:
"""Analyze physical activity status"""
fitness_history = self.health_context.get_fitness_history(days=30)
adherence = self.health_context.get_workout_adherence(days=30)
if not fitness_history:
return {
'status': 'sedentary',
'score': 0.3,
'workouts_30d': 0,
'recommendation': 'Start with 150 minutes of moderate activity per week'
}
total_minutes = sum(f.duration_minutes for f in fitness_history)
if adherence > 0.8 and total_minutes > 150:
return {
'status': 'active',
'score': 1.0,
'workouts_30d': len(fitness_history),
'total_minutes': total_minutes,
'adherence': adherence,
'recommendation': 'Excellent! Maintain current activity level'
}
elif adherence > 0.5:
return {
'status': 'moderately_active',
'score': 0.7,
'workouts_30d': len(fitness_history),
'total_minutes': total_minutes,
'adherence': adherence,
'recommendation': 'Good progress! Try to increase frequency'
}
else:
return {
'status': 'low_activity',
'score': 0.4,
'workouts_30d': len(fitness_history),
'total_minutes': total_minutes,
'adherence': adherence,
'recommendation': 'Increase physical activity gradually'
}
def _analyze_symptoms(self) -> Dict[str, Any]:
"""Analyze symptom patterns"""
symptom_records = self.health_context.get_records_by_type('symptom')
if not symptom_records:
return {
'status': 'no_symptoms',
'score': 1.0,
'recommendation': 'Continue monitoring health'
}
# Count symptoms in last 30 days
recent_symptoms = [r for r in symptom_records if r.timestamp > datetime.now() - timedelta(days=30)]
if len(recent_symptoms) > 5:
return {
'status': 'frequent_symptoms',
'score': 0.4,
'recent_symptoms': len(recent_symptoms),
'recommendation': 'Consult healthcare provider for evaluation'
}
elif len(recent_symptoms) > 0:
return {
'status': 'occasional_symptoms',
'score': 0.7,
'recent_symptoms': len(recent_symptoms),
'recommendation': 'Monitor symptoms and maintain healthy lifestyle'
}
else:
return {
'status': 'no_recent_symptoms',
'score': 0.9,
'recommendation': 'Good health status'
}
def _analyze_nutrition(self) -> Dict[str, Any]:
"""Analyze nutrition status"""
nutrition_records = self.health_context.get_records_by_type('nutrition')
if not nutrition_records:
return {
'status': 'unknown',
'score': 0.5,
'recommendation': 'Share your nutrition habits for personalized advice'
}
# Check adherence to nutrition plans
adherence = len(nutrition_records) / max(1, (30 / 7)) # Expected ~1 per week
if adherence > 0.8:
return {
'status': 'good_adherence',
'score': 0.9,
'adherence': min(adherence, 1.0),
'recommendation': 'Excellent nutrition tracking!'
}
else:
return {
'status': 'low_adherence',
'score': 0.5,
'adherence': adherence,
'recommendation': 'Improve nutrition tracking and consistency'
}
def _analyze_mental_health(self) -> Dict[str, Any]:
"""Analyze mental health status"""
mental_records = self.health_context.get_records_by_type('mental_health')
if not mental_records:
return {
'status': 'unknown',
'score': 0.5,
'recommendation': 'Share your mental health concerns for support'
}
# Check for stress/anxiety mentions
stress_count = sum(1 for r in mental_records if 'stress' in str(r.data).lower())
if stress_count > 3:
return {
'status': 'high_stress',
'score': 0.4,
'stress_indicators': stress_count,
'recommendation': 'Consider stress management techniques and professional support'
}
else:
return {
'status': 'stable',
'score': 0.8,
'recommendation': 'Continue mental health practices'
}
def calculate_health_score(self) -> float:
"""Calculate overall health score (0-100)"""
analysis = self.analyze_health_status()
return round(analysis['overall_health_score'] * 100, 1)
# ===== Risk Prediction =====
def identify_health_risks(self) -> List[Dict[str, Any]]:
"""Identify potential health risks"""
risks = []
profile = self.health_context.get_user_profile()
# BMI-related risks
if profile.bmi and profile.bmi > 30:
risks.append({
'risk_type': 'obesity',
'severity': 'high',
'description': 'Elevated BMI increases risk of cardiovascular disease and diabetes',
'recommendation': 'Consult healthcare provider for weight management'
})
# Sedentary lifestyle risk
fitness_history = self.health_context.get_fitness_history(days=30)
if len(fitness_history) < 2:
risks.append({
'risk_type': 'sedentary_lifestyle',
'severity': 'medium',
'description': 'Low physical activity increases health risks',
'recommendation': 'Start with 30 minutes of moderate activity daily'
})
# Chronic condition risks
if profile.health_conditions:
for condition in profile.health_conditions:
risks.append({
'risk_type': f'chronic_{condition}',
'severity': 'medium',
'description': f'Existing condition: {condition}',
'recommendation': 'Follow medical advice and monitor regularly'
})
return risks
def predict_disease_risk(self) -> List[Dict[str, Any]]:
"""Predict disease risk based on health data"""
predictions = []
profile = self.health_context.get_user_profile()
# Cardiovascular disease risk
cv_risk_score = self._calculate_cv_risk(profile)
if cv_risk_score > 0.6:
predictions.append({
'disease': 'cardiovascular_disease',
'risk_score': cv_risk_score,
'risk_level': 'high' if cv_risk_score > 0.8 else 'medium',
'factors': ['high_bmi', 'low_activity', 'age'],
'recommendation': 'Regular cardiovascular screening recommended'
})
# Type 2 Diabetes risk
diabetes_risk = self._calculate_diabetes_risk(profile)
if diabetes_risk > 0.6:
predictions.append({
'disease': 'type_2_diabetes',
'risk_score': diabetes_risk,
'risk_level': 'high' if diabetes_risk > 0.8 else 'medium',
'factors': ['high_bmi', 'sedentary', 'age'],
'recommendation': 'Blood glucose screening recommended'
})
return predictions
def _calculate_cv_risk(self, profile) -> float:
"""Calculate cardiovascular disease risk (0-1)"""
risk = 0.3 # Base risk
# Age factor
if profile.age and profile.age > 50:
risk += 0.2
# BMI factor
if profile.bmi and profile.bmi > 30:
risk += 0.2
# Activity factor
fitness_history = self.health_context.get_fitness_history(days=30)
if len(fitness_history) < 2:
risk += 0.15
# Health conditions
if profile.health_conditions:
risk += 0.1
return min(risk, 1.0)
def _calculate_diabetes_risk(self, profile) -> float:
"""Calculate type 2 diabetes risk (0-1)"""
risk = 0.2 # Base risk
# BMI factor (strongest predictor)
if profile.bmi and profile.bmi > 25:
risk += 0.3
# Age factor
if profile.age and profile.age > 45:
risk += 0.15
# Activity factor
fitness_history = self.health_context.get_fitness_history(days=30)
if len(fitness_history) < 2:
risk += 0.2
return min(risk, 1.0)
def recommend_preventive_measures(self) -> List[str]:
"""Recommend preventive health measures"""
recommendations = []
profile = self.health_context.get_user_profile()
# Weight management
if profile.bmi and profile.bmi > 25:
recommendations.append("Implement gradual weight loss through balanced diet and exercise")
# Physical activity
fitness_history = self.health_context.get_fitness_history(days=30)
if len(fitness_history) < 3:
recommendations.append("Aim for 150 minutes of moderate-intensity exercise per week")
# Nutrition
recommendations.append("Maintain balanced diet with whole grains, fruits, and vegetables")
# Stress management
recommendations.append("Practice stress management techniques like meditation or yoga")
# Regular checkups
recommendations.append("Schedule regular health checkups with your healthcare provider")
# Sleep
recommendations.append("Maintain 7-9 hours of quality sleep per night")
return recommendations
def generate_health_report(self) -> str:
"""Generate comprehensive health report"""
analysis = self.analyze_health_status()
risks = self.identify_health_risks()
predictions = self.predict_disease_risk()
recommendations = self.recommend_preventive_measures()
report = f"""
# Health Analysis Report
Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}
## Overall Health Score: {analysis['overall_health_score']}/1.0
### Health Status
- BMI Status: {analysis['bmi_status']['status']}
- Activity Level: {analysis['activity_status']['status']}
- Symptom Status: {analysis['symptom_status']['status']}
- Nutrition Status: {analysis['nutrition_status']['status']}
- Mental Health: {analysis['mental_health_status']['status']}
### Identified Risks
{chr(10).join([f"- {r['risk_type']}: {r['description']}" for r in risks]) if risks else "No significant risks identified"}
### Disease Risk Predictions
{chr(10).join([f"- {p['disease']}: {p['risk_level']} risk ({p['risk_score']:.1%})" for p in predictions]) if predictions else "Low disease risk"}
### Preventive Recommendations
{chr(10).join([f"- {r}" for r in recommendations])}
"""
return report
|