File size: 8,998 Bytes
eeb0f9c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
"""
Feedback Loop Example
Demonstrates collecting and learning from user feedback
"""

from feedback import get_feedback_collector, get_feedback_analyzer, FeedbackCategory


def example_collect_ratings():
    """Example: Collect user ratings"""
    print("=" * 60)
    print("COLLECTING USER RATINGS")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Example 1: High rating (5 stars)
    print("\n✅ Example 1: User loves the response")
    feedback_id = collector.collect_rating(
        user_id="user123",
        agent_name="nutrition_agent",
        user_message="Tôi muốn giảm cân, nên ăn gì?",
        agent_response="Để giảm cân hiệu quả, bạn nên ăn nhiều rau xanh, protein...",
        rating=5,
        category=FeedbackCategory.HELPFULNESS,
        comment="Rất hữu ích và chi tiết!"
    )
    print(f"   Feedback ID: {feedback_id}")
    print(f"   Rating: 5/5 ⭐⭐⭐⭐⭐")
    
    # Example 2: Low rating (2 stars)
    print("\n❌ Example 2: User unhappy with response")
    feedback_id = collector.collect_rating(
        user_id="user456",
        agent_name="nutrition_agent",
        user_message="Tôi bị tiểu đường, ăn gì được?",
        agent_response="Bạn nên ăn ít đường.",
        rating=2,
        category=FeedbackCategory.COMPLETENESS,
        comment="Quá chung chung, không cụ thể"
    )
    print(f"   Feedback ID: {feedback_id}")
    print(f"   Rating: 2/5 ⭐⭐")
    
    # Example 3: Thumbs up
    print("\n👍 Example 3: Quick thumbs up")
    feedback_id = collector.collect_thumbs(
        user_id="user789",
        agent_name="exercise_agent",
        user_message="Tập gì để giảm mỡ bụng?",
        agent_response="Bạn nên tập plank, crunches, và cardio...",
        is_positive=True,
        comment="Hay!"
    )
    print(f"   Feedback ID: {feedback_id}")
    print(f"   Thumbs: 👍")


def example_collect_corrections():
    """Example: Collect user corrections"""
    print("\n" + "=" * 60)
    print("COLLECTING USER CORRECTIONS")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Example: User corrects wrong information
    print("\n📝 User corrects incorrect BMI calculation")
    feedback_id = collector.collect_correction(
        user_id="user123",
        agent_name="nutrition_agent",
        user_message="Tôi 70kg, 175cm, BMI của tôi là bao nhiêu?",
        agent_response="BMI của bạn là 24.5",  # Wrong!
        corrected_response="BMI của bạn là 22.9 (70 / 1.75²)",
        correction_reason="calculation_error"
    )
    print(f"   Correction ID: {feedback_id}")
    print(f"   Original: BMI = 24.5 ❌")
    print(f"   Corrected: BMI = 22.9 ✅")


def example_report_issue():
    """Example: Report problematic response"""
    print("\n" + "=" * 60)
    print("REPORTING ISSUES")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Example: Report harmful advice
    print("\n⚠️ User reports harmful medical advice")
    report_id = collector.report_issue(
        user_id="user999",
        agent_name="symptom_agent",
        user_message="Tôi bị đau ngực dữ dội",
        agent_response="Bạn nên nghỉ ngơi, uống nước",
        issue_type="harmful",
        description="Đau ngực dữ dội cần đi bệnh viện ngay, không nên chỉ nghỉ ngơi",
        severity="critical"
    )
    print(f"   Report ID: {report_id}")
    print(f"   Severity: CRITICAL 🚨")


def example_analyze_feedback():
    """Example: Analyze feedback to find patterns"""
    print("\n" + "=" * 60)
    print("ANALYZING FEEDBACK")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Add more sample data
    print("\n📊 Adding sample feedback data...")
    for i in range(10):
        collector.collect_rating(
            user_id=f"user{i}",
            agent_name="nutrition_agent",
            user_message=f"Question {i}",
            agent_response=f"Response {i}",
            rating=4 if i % 2 == 0 else 3,
            category=FeedbackCategory.HELPFULNESS
        )
    
    # Get statistics
    print("\n📈 Feedback Statistics:")
    stats = collector.get_feedback_stats(agent_name="nutrition_agent")
    print(f"   Total ratings: {stats['total_ratings']}")
    print(f"   Average rating: {stats['average_rating']:.1f}/5.0")
    print(f"   Rating distribution:")
    for rating in [5, 4, 3, 2, 1]:
        count = stats['rating_distribution'][rating]
        print(f"      {rating} stars: {count}")
    
    # Analyze performance
    print("\n🔍 Performance Analysis:")
    analyzer = get_feedback_analyzer(collector)
    analysis = analyzer.analyze_agent_performance("nutrition_agent")
    
    print(f"   Overall rating: {analysis['overall_rating']:.1f}/5.0")
    
    if analysis['strengths']:
        print(f"\n   Strengths:")
        for strength in analysis['strengths']:
            print(f"      ✅ {strength}")
    
    if analysis['weaknesses']:
        print(f"\n   Weaknesses:")
        for weakness in analysis['weaknesses']:
            print(f"      ⚠️ {weakness}")


def example_get_insights():
    """Example: Get actionable insights"""
    print("\n" + "=" * 60)
    print("ACTIONABLE INSIGHTS")
    print("=" * 60)
    
    collector = get_feedback_collector()
    analyzer = get_feedback_analyzer(collector)
    
    # Get insights
    insights = analyzer.get_actionable_insights("nutrition_agent", limit=3)
    
    if insights:
        print("\n💡 Top Improvement Opportunities:")
        for i, insight in enumerate(insights, 1):
            print(f"\n   {i}. [{insight['priority'].upper()}] {insight['category']}")
            print(f"      Issue: {insight['issue']}")
            print(f"      Action: {insight['action']}")
            if insight['examples']:
                print(f"      Examples: {', '.join(insight['examples'][:2])}")
    else:
        print("\n   No insights available yet. Collect more feedback!")


def example_generate_report():
    """Example: Generate improvement report"""
    print("\n" + "=" * 60)
    print("IMPROVEMENT REPORT")
    print("=" * 60)
    
    collector = get_feedback_collector()
    analyzer = get_feedback_analyzer(collector)
    
    # Generate report
    report = analyzer.generate_improvement_report("nutrition_agent")
    print(report)


def example_export_for_training():
    """Example: Export feedback for fine-tuning"""
    print("\n" + "=" * 60)
    print("EXPORT FOR FINE-TUNING")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Export high-quality feedback
    print("\n📦 Exporting high-quality feedback (rating >= 4)...")
    output_file = collector.export_for_fine_tuning(
        agent_name="nutrition_agent",
        min_rating=4,
        include_corrections=True
    )
    
    print(f"   ✅ Exported to: {output_file}")
    print(f"   Ready for fine-tuning!")


def example_compare_agents():
    """Example: Compare agent performance"""
    print("\n" + "=" * 60)
    print("AGENT COMPARISON")
    print("=" * 60)
    
    collector = get_feedback_collector()
    
    # Add feedback for different agents
    print("\n📊 Adding feedback for multiple agents...")
    agents = ["nutrition_agent", "exercise_agent", "symptom_agent"]
    
    for agent in agents:
        for i in range(5):
            rating = 5 if agent == "nutrition_agent" else (4 if agent == "exercise_agent" else 3)
            collector.collect_rating(
                user_id=f"user{i}",
                agent_name=agent,
                user_message=f"Question for {agent}",
                agent_response=f"Response from {agent}",
                rating=rating
            )
    
    # Compare
    analyzer = get_feedback_analyzer(collector)
    comparison = analyzer.compare_agents()
    
    print(f"\n🏆 Agent Rankings:")
    for i, agent in enumerate(comparison['agents'], 1):
        print(f"   {i}. {agent['agent']}: {agent['average_rating']:.1f}/5.0 ({agent['total_feedback']} feedback)")
    
    if comparison['best_agent']:
        print(f"\n   Best: {comparison['best_agent']['agent']} 🥇")
    
    if comparison['worst_agent']:
        print(f"   Needs improvement: {comparison['worst_agent']['agent']} ⚠️")


if __name__ == '__main__':
    example_collect_ratings()
    example_collect_corrections()
    example_report_issue()
    example_analyze_feedback()
    example_get_insights()
    example_generate_report()
    example_export_for_training()
    example_compare_agents()
    
    print("\n" + "=" * 60)
    print("✅ FEEDBACK LOOP DEMO COMPLETE!")
    print("=" * 60)
    print("\nNext steps:")
    print("1. Integrate feedback collection into your UI")
    print("2. Review feedback regularly")
    print("3. Use insights to improve agents")
    print("4. Export high-quality feedback for fine-tuning")
    print("5. Monitor trends and act on critical issues")