Spaces:
Runtime error
Runtime error
File size: 23,886 Bytes
eeb0f9c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 |
"""
Agent Coordinator - Manages agent collaboration and handoffs
Enables multi-agent responses and smooth transitions
"""
from typing import Dict, List, Optional, Any
import asyncio
from concurrent.futures import ThreadPoolExecutor
from utils.memory import ConversationMemory
from utils.session_store import get_session_store
from utils.conversation_summarizer import get_summarizer
from agents.core.router import route_to_agent, get_router
from fine_tuning import get_data_collector
from health_data import HealthContext, HealthDataStore
import hashlib
import json
class AgentCoordinator:
"""
Coordinates multiple agents and manages handoffs
Provides multi-agent collaboration capabilities
"""
def __init__(self, user_id: Optional[str] = None, use_embedding_router=True, enable_cache=True, enable_data_collection=True, enable_session_persistence=True):
"""
Initialize coordinator with shared memory and data store
Args:
user_id: Unique user identifier for session persistence
use_embedding_router: Use embedding-based routing (faster)
enable_cache: Enable response caching
enable_data_collection: Enable conversation logging for fine-tuning
enable_session_persistence: Enable session persistence across restarts
"""
# Session persistence
self.user_id = user_id
self.session_store = get_session_store() if enable_session_persistence else None
# Initialize memory with session persistence
self.memory = ConversationMemory(
user_id=user_id,
session_store=self.session_store
)
self.data_store = HealthDataStore()
self.health_context = None
self.agents = {}
# Enable embedding router (faster than LLM routing)
self.use_embedding_router = use_embedding_router
if use_embedding_router:
self.router = get_router(use_embeddings=True)
else:
self.router = None
# Enable response cache
self.enable_cache = enable_cache
self.response_cache = {} if enable_cache else None
# Enable data collection for fine-tuning
self.enable_data_collection = enable_data_collection
if enable_data_collection:
self.data_collector = get_data_collector()
else:
self.data_collector = None
# Conversation summarizer
self.summarizer = get_summarizer()
self._initialize_agents()
def _initialize_agents(self) -> None:
"""Initialize all agents with shared memory"""
# Import agents (lazy import to avoid circular dependencies)
from agents.specialized.nutrition_agent import NutritionAgent
from agents.specialized.exercise_agent import ExerciseAgent
from agents.specialized.symptom_agent import SymptomAgent
from agents.specialized.mental_health_agent import MentalHealthAgent
from agents.specialized.general_health_agent import GeneralHealthAgent
# Create agents with shared memory
self.agents = {
'nutrition_agent': NutritionAgent(memory=self.memory),
'exercise_agent': ExerciseAgent(memory=self.memory),
'symptom_agent': SymptomAgent(memory=self.memory),
'mental_health_agent': MentalHealthAgent(memory=self.memory),
'general_health_agent': GeneralHealthAgent(memory=self.memory)
}
def handle_query(self, message: str, chat_history: Optional[List] = None, user_id: Optional[str] = None) -> str:
"""
Main entry point - handles user query with coordination
Args:
message: User's message
chat_history: Conversation history
user_id: User ID for data persistence
Returns:
str: Response (possibly from multiple agents)
"""
chat_history = chat_history or []
# Create or update health context for user
if user_id:
self.health_context = HealthContext(user_id, self.data_store)
# Inject health context into all agents
for agent in self.agents.values():
if hasattr(agent, 'set_health_context'):
agent.set_health_context(self.health_context)
# Update memory from chat history
self._update_memory_from_history(chat_history)
# Summarize if conversation is too long
if self.summarizer.should_summarize(chat_history):
chat_history = self._summarize_if_needed(chat_history)
# Check if multi-agent collaboration is needed
if self._needs_multi_agent(message):
return self._handle_multi_agent_query(message, chat_history)
# Single agent routing
return self._handle_single_agent_query(message, chat_history)
def _get_cache_key(self, message: str, chat_history: List) -> str:
"""Generate cache key from message and recent history"""
# Include last 2 exchanges for context
recent_history = chat_history[-4:] if len(chat_history) > 4 else chat_history
cache_data = {
"message": message.lower().strip(),
"history": [(h[0].lower().strip() if h[0] else "", h[1][:50] if len(h) > 1 else "") for h in recent_history]
}
cache_str = json.dumps(cache_data, sort_keys=True)
return hashlib.md5(cache_str.encode()).hexdigest()
def _handle_single_agent_query(self, message: str, chat_history: List, file_data: Optional[Dict] = None) -> str:
"""Handle query with single agent (with potential handoff)"""
# Check cache first
if self.enable_cache:
cache_key = self._get_cache_key(message, chat_history)
if cache_key in self.response_cache:
# print("[CACHE HIT] Returning cached response")
return self.response_cache[cache_key]
# Route to appropriate agent (use embedding router if available)
if self.router:
routing_result = self.router.route(message, chat_history)
else:
routing_result = route_to_agent(message, chat_history)
agent_name = routing_result['agent']
parameters = routing_result['parameters']
# Update current agent in memory
self.memory.set_current_agent(agent_name)
# Get agent
agent = self.agents.get(agent_name)
if not agent:
return "Xin lỗi, không tìm thấy agent phù hợp."
# Let agent handle the request
response = agent.handle(parameters, chat_history)
# Log conversation for fine-tuning (with cleaned data)
if self.enable_data_collection and self.data_collector:
user_data = self.memory.get_full_profile()
# Clean user data before logging to prevent learning from errors
cleaned_user_data = self._clean_user_data_for_training(user_data)
self.data_collector.log_conversation(
agent_name=agent_name,
user_message=message,
agent_response=response,
user_data=cleaned_user_data,
metadata={'data_cleaned': True} # Flag that data was cleaned
)
# Cache the response
if self.enable_cache:
cache_key = self._get_cache_key(message, chat_history)
self.response_cache[cache_key] = response
# Limit cache size to 100 entries
if len(self.response_cache) > 100:
# Remove oldest entry (simple FIFO)
self.response_cache.pop(next(iter(self.response_cache)))
# Check if handoff is needed
if hasattr(agent, 'should_handoff') and agent.should_handoff(message, chat_history):
next_agent_name = agent.suggest_next_agent(message)
if next_agent_name and next_agent_name in self.agents:
return self._perform_handoff(agent, next_agent_name, response, message, chat_history)
return response
def _handle_multi_agent_query(self, message: str, chat_history: List) -> str:
"""Handle query that needs multiple agents (with parallel execution)"""
# Detect which agents are needed
agents_needed = self._detect_required_agents(message)
if len(agents_needed) <= 1:
# Fallback to single agent
return self._handle_single_agent_query(message, chat_history)
# Use async for parallel execution (faster!)
try:
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
responses = loop.run_until_complete(
self._handle_multi_agent_async(message, chat_history, agents_needed)
)
loop.close()
except Exception as e:
print(f"Async multi-agent failed, falling back to sequential: {e}")
# Fallback to sequential if async fails
responses = {}
for agent_name in agents_needed:
agent = self.agents.get(agent_name)
if agent:
parameters = {'user_query': message}
responses[agent_name] = agent.handle(parameters, chat_history)
# Combine responses
return self._combine_responses(responses, agents_needed)
async def _handle_multi_agent_async(self, message: str, chat_history: List, agents_needed: List[str]) -> Dict[str, str]:
"""Execute multiple agents in parallel using asyncio"""
async def call_agent(agent_name: str):
"""Async wrapper for agent.handle()"""
agent = self.agents.get(agent_name)
if not agent:
return None
# Run in thread pool (since agent.handle is sync)
loop = asyncio.get_event_loop()
with ThreadPoolExecutor() as pool:
parameters = {'user_query': message}
response = await loop.run_in_executor(
pool,
agent.handle,
parameters,
chat_history
)
return response
# Create tasks for all agents
tasks = {agent_name: call_agent(agent_name) for agent_name in agents_needed}
# Execute in parallel
results = await asyncio.gather(*tasks.values(), return_exceptions=True)
# Map results back to agent names
responses = {}
for agent_name, result in zip(tasks.keys(), results):
if isinstance(result, Exception):
print(f"Agent {agent_name} failed: {result}")
responses[agent_name] = f"Xin lỗi, {agent_name} gặp lỗi."
elif result:
responses[agent_name] = result
return responses
def _perform_handoff(
self,
from_agent: Any,
to_agent_name: str,
current_response: str,
message: str,
chat_history: List
) -> str:
"""
Perform smooth handoff between agents
Args:
from_agent: Current agent
to_agent_name: Name of agent to hand off to
current_response: Current agent's response
message: User's message
chat_history: Conversation history
Returns:
str: Combined response with handoff
"""
# Create handoff message
handoff_msg = from_agent.create_handoff_message(to_agent_name, current_response)
# Update memory
self.memory.set_current_agent(to_agent_name)
return handoff_msg
def _needs_multi_agent(self, message: str) -> bool:
"""
Determine if query needs multiple agents
Args:
message: User's message
Returns:
bool: True if multiple agents needed
"""
agents_needed = self._detect_required_agents(message)
return len(agents_needed) > 1
def _detect_required_agents(self, message: str) -> List[str]:
"""
Detect which agents are needed for this query
Args:
message: User's message
Returns:
List[str]: List of agent names needed
"""
agents_needed = []
message_lower = message.lower()
# PRIORITY 1: Symptom keywords (highest priority - health emergencies)
symptom_keywords = ['đau', 'sốt', 'ho', 'buồn nôn', 'chóng mặt', 'triệu chứng', 'khó tiêu', 'đầy bụng', 'ợ hơi']
has_symptoms = any(kw in message_lower for kw in symptom_keywords)
# PRIORITY 2: Nutrition keywords (but NOT if it's a symptom context)
nutrition_keywords = ['thực đơn', 'calo', 'giảm cân', 'tăng cân', 'dinh dưỡng', 'rau củ', 'thực phẩm']
# Special handling: 'ăn' only counts as nutrition if NOT in symptom context
has_nutrition = any(kw in message_lower for kw in nutrition_keywords)
if not has_symptoms and 'ăn' in message_lower:
has_nutrition = True
# PRIORITY 3: Exercise keywords
exercise_keywords = ['tập', 'gym', 'cardio', 'yoga', 'chạy bộ', 'exercise', 'workout']
has_exercise = any(kw in message_lower for kw in exercise_keywords)
# PRIORITY 4: Mental health keywords
mental_keywords = ['stress', 'lo âu', 'trầm cảm', 'mất ngủ', 'burnout', 'mental']
has_mental = any(kw in message_lower for kw in mental_keywords)
# IMPORTANT: Only trigger multi-agent if CLEARLY needs multiple domains
# Example: "Tôi bị đau bụng, nên ăn gì?" -> symptom + nutrition
# But: "WHO khuyến nghị ăn bao nhiêu rau củ?" -> ONLY nutrition
# Count how many domains are triggered
domain_count = sum([has_symptoms, has_nutrition, has_exercise, has_mental])
# If only 1 domain -> single agent (no multi-agent)
if domain_count <= 1:
if has_symptoms:
agents_needed.append('symptom_agent')
elif has_nutrition:
agents_needed.append('nutrition_agent')
elif has_exercise:
agents_needed.append('exercise_agent')
elif has_mental:
agents_needed.append('mental_health_agent')
else:
# Multiple domains detected
# Check if it's a REAL multi-domain question or false positive
# False positive patterns (should be single agent)
false_positives = [
'who khuyến nghị', # WHO recommendations -> single domain
'bao nhiêu', # Quantitative questions -> single domain
'khó tiêu', # Digestive issues -> symptom only
'đầy bụng', # Bloating -> symptom only
'đau bụng', # Stomach pain -> symptom only
'ợ hơi', # Burping -> symptom only
]
is_false_positive = any(pattern in message_lower for pattern in false_positives)
if is_false_positive:
# Use primary domain only
if has_nutrition:
agents_needed.append('nutrition_agent')
elif has_exercise:
agents_needed.append('exercise_agent')
elif has_symptoms:
agents_needed.append('symptom_agent')
elif has_mental:
agents_needed.append('mental_health_agent')
else:
# Real multi-domain question
if has_symptoms:
agents_needed.append('symptom_agent')
if has_nutrition:
agents_needed.append('nutrition_agent')
if has_exercise:
agents_needed.append('exercise_agent')
if has_mental:
agents_needed.append('mental_health_agent')
return agents_needed
def _combine_responses(self, responses: Dict[str, str], agents_order: List[str]) -> str:
"""
Combine responses from multiple agents
Args:
responses: Dict of agent_name -> response
agents_order: Order of agents
Returns:
str: Combined response
"""
# For natural flow, just combine responses without headers
# Make it feel like ONE person giving comprehensive advice
responses_list = [responses[agent] for agent in agents_order if agent in responses]
if len(responses_list) == 1:
# Single agent - return as is
return responses_list[0]
# Multiple agents - combine naturally
combined = ""
# First response (usually symptom assessment)
combined += responses_list[0]
# Add other responses with smooth transitions
for i in range(1, len(responses_list)):
# Natural transition phrases
transitions = [
"\n\nNgoài ra, ",
"\n\nBên cạnh đó, ",
"\n\nĐồng thời, ",
"\n\nVề mặt khác, "
]
transition = transitions[min(i-1, len(transitions)-1)]
combined += transition + responses_list[i]
# Natural closing (not too formal)
combined += "\n\nBạn thử làm theo xem có đỡ không nhé. Có gì thắc mắc cứ hỏi mình!"
return combined
def _update_memory_from_history(self, chat_history: List) -> None:
"""Extract and update SHARED memory from chat history to prevent duplicate questions"""
if not chat_history:
return
# Extract user info from ALL conversations (not just current agent)
user_info = self._extract_user_info_from_all_history(chat_history)
# Update SHARED memory that ALL agents can access
if user_info:
for key, value in user_info.items():
self.memory.update_profile(key, value)
def _extract_user_info_from_all_history(self, chat_history: List) -> Dict:
"""Extract user information from entire conversation history"""
user_info = {}
# Common patterns to extract
patterns = {
'age': [r'(\d+)\s*tuổi', r'tôi\s*(\d+)', r'(\d+)\s*years?\s*old'],
'gender': [r'tôi là (nam|nữ)', r'giới tính[:\s]*(nam|nữ)', r'(male|female|nam|nữ)'],
'weight': [r'(\d+)\s*kg', r'nặng\s*(\d+)', r'cân nặng[:\s]*(\d+)'],
'height': [r'(\d+)\s*cm', r'cao\s*(\d+)', r'chiều cao[:\s]*(\d+)'],
'goal': [r'muốn\s*(giảm cân|tăng cân|tăng cơ|khỏe mạnh)', r'mục tiêu[:\s]*(.+)']
}
# Search through all user messages
import re
for user_msg, _ in chat_history:
if not user_msg:
continue
for field, field_patterns in patterns.items():
if field not in user_info: # Only extract if not already found
for pattern in field_patterns:
match = re.search(pattern, user_msg.lower())
if match:
user_info[field] = match.group(1)
break
return user_info
# Extract gender
if not self.memory.get_profile('gender'):
if re.search(r'\bnam\b|male', all_messages.lower()):
self.memory.update_profile('gender', 'male')
elif re.search(r'\bnữ\b|female', all_messages.lower()):
self.memory.update_profile('gender', 'female')
# Extract weight
if not self.memory.get_profile('weight'):
weight_match = re.search(r'(\d+)\s*kg|nặng\s*(\d+)', all_messages.lower())
if weight_match:
weight = float([g for g in weight_match.groups() if g][0])
self.memory.update_profile('weight', weight)
# Extract height
if not self.memory.get_profile('height'):
height_match = re.search(r'(\d+)\s*cm|cao\s*(\d+)', all_messages.lower())
if height_match:
height = float([g for g in height_match.groups() if g][0])
self.memory.update_profile('height', height)
def _summarize_if_needed(self, chat_history: List) -> List:
"""
Summarize conversation if it's too long
Args:
chat_history: Full conversation history
Returns:
Compressed history with summary
"""
user_profile = self.memory.get_full_profile()
compressed = self.summarizer.compress_history(
chat_history,
target_turns=10 # Keep last 10 turns + summary
)
# print(f"📝 Summarized {len(chat_history)} turns → {len(compressed)} turns")
return compressed
def get_conversation_stats(self, chat_history: List) -> Dict[str, Any]:
"""Get statistics about current conversation"""
return self.summarizer.get_summary_stats(chat_history)
def get_memory_summary(self) -> str:
"""Get summary of current memory state"""
return self.memory.get_context_summary()
def _clean_user_data_for_training(self, user_data: Dict[str, Any]) -> Dict[str, Any]:
"""
Clean user data before logging for training
Ensures only valid, corrected data is used for fine-tuning
This prevents the model from learning bad patterns like:
- "cao 200m" (should be 200cm)
- "nặng 75g" (should be 75kg)
- Invalid BMI values
"""
cleaned = user_data.copy()
# Validate and clean height (should be 50-300 cm)
if 'height' in cleaned and cleaned['height'] is not None:
height = float(cleaned['height'])
if not (50 <= height <= 300):
# Invalid height - don't log it
cleaned['height'] = None
# Validate and clean weight (should be 20-300 kg)
if 'weight' in cleaned and cleaned['weight'] is not None:
weight = float(cleaned['weight'])
if not (20 <= weight <= 300):
# Invalid weight - don't log it
cleaned['weight'] = None
# Validate and clean age (should be 1-120)
if 'age' in cleaned and cleaned['age'] is not None:
age = int(cleaned['age'])
if not (1 <= age <= 120):
# Invalid age - don't log it
cleaned['age'] = None
# Validate and clean body fat (should be 3-60%)
if 'body_fat_percentage' in cleaned and cleaned['body_fat_percentage'] is not None:
bf = float(cleaned['body_fat_percentage'])
if not (3 <= bf <= 60):
# Invalid body fat - don't log it
cleaned['body_fat_percentage'] = None
# Remove any None values to keep training data clean
cleaned = {k: v for k, v in cleaned.items() if v is not None}
return cleaned
def clear_memory(self) -> None:
"""Clear all memory (start fresh)"""
self.memory.clear()
def __repr__(self) -> str:
return f"<AgentCoordinator: {self.get_memory_summary()}>"
|