Spaces:
Running
Running
File size: 8,368 Bytes
97eaafb fc7b4a9 c84f2c4 fc7b4a9 75d43d2 fc7b4a9 c84f2c4 fc7b4a9 75d43d2 fc7b4a9 75d43d2 fc7b4a9 75d43d2 fc7b4a9 91f3c16 fc7b4a9 75d43d2 fc7b4a9 75d43d2 fc7b4a9 2b37a16 97eaafb fc7b4a9 75d43d2 344eaf8 fc7b4a9 c84f2c4 97eaafb c84f2c4 0534c29 fc7b4a9 75d43d2 c84f2c4 75d43d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
from src.preprocessing.preprocessor import (
single_preprocessing,
single_audio_preprocessing,
)
from src.spectttra.spectttra_trainer import spectttra_predict
from src.llm2vectrain.model import load_llm2vec_model
from src.llm2vectrain.llm2vec_trainer import l2vec_single_train, load_pca_model
from src.models.mlp import build_mlp, load_config
from src.utils.dataset import instance_scaler, audio_instance_scaler
import numpy as np
import pandas as pd
def predict_multimodal(audio_file, lyrics):
"""
Predict script which includes preprocessing, feature extraction, and
training the MLP model for a single data sample.
Parameters
----------
audio : audio_object
Audio object file
lyric : string
Lyric string
Returns
-------
prediction : str
A string result of the prediction
label : int
A numerical representation of the prediction
"""
# 1.) Instantiate LLM2Vec Model
llm2vec_model = load_llm2vec_model()
# 2.) Preprocess both audio and lyrics
audio, lyrics = single_preprocessing(audio_file, lyrics)
# 3.) Call the train method for both models
audio_features = spectttra_predict(audio)
audio_features = audio_features.reshape(1, -1)
lyrics_features = l2vec_single_train(llm2vec_model, lyrics)
# 4.) Scale the vectors using Z-Score
audio_features, lyrics_features = instance_scaler(audio_features, lyrics_features)
# 5.) Reduce the lyrics using saved PCA model
reduced_lyrics = load_pca_model(lyrics_features)
# 6.) Concatenate the vectors of audio_features + lyrics_features
results = np.concatenate([audio_features, reduced_lyrics], axis=1)
# ---- Load MLP Classifier ----
config = load_config("config/model_config.yml")
classifier = build_mlp(input_dim=results.shape[1], config=config)
# 7.) Load trained weights
model_path = "models/mlp/mlp_best_multimodal.pth"
classifier.load_model(model_path)
classifier.model.eval()
# 8.) Run prediction
confidence, prediction, label, probability = classifier.predict_single(
results.flatten()
)
return {
"confidence": confidence,
"prediction": prediction,
"label": label,
"probability": probability,
}
def predict_unimodal(audio_file):
"""
Predict script of AUDIO only which includes preprocessing, feature extraction, and
training the MLP model for a single data sample.
Parameters
----------
audio : audio_object
Audio object file
Returns
-------
prediction : str
A string result of the prediction
label : int
A numerical representation of the prediction
"""
# 1.) Preprocess the audio
audio = single_audio_preprocessing(audio_file)
# 2.) Call the inference method from SpecTTTra
audio_features = spectttra_predict(audio)
audio_features = audio_features.reshape(1, -1)
# 4.) Scale the vector using Z-Score
audio_features = audio_instance_scaler(audio_features)
# 5.) Load MLP Classifier
config = load_config("config/model_config.yml")
classifier = build_mlp(input_dim=audio_features.shape[1], config=config)
# 6.) Load trained weights
model_path = "models/mlp/mlp_best_unimodal.pth"
classifier.load_model(model_path)
classifier.model.eval()
# 8.) Run prediction
confidence, prediction, label, probability = classifier.predict_single(
audio_features.flatten()
)
return {
"confidence": confidence,
"prediction": prediction,
"label": label,
"probability": probability,
}
def predict_combined(audio_file, lyrics):
"""
Generate both multimodal and audio-only predictions efficiently.
Follows the exact same logic as separate functions but reuses audio features.
Parameters
----------
audio_file : audio_object
Audio object file
lyrics : str
Lyric string
Returns
-------
dict
Combined results containing both multimodal and audio-only predictions
"""
import time
start_time = time.time()
# Load config once
config = load_config("config/model_config.yml")
# [1] Multimdoal prediction
print("[Predict] Running multimodal prediction...")
multimodal_start = time.time()
# 1.) Load LLM2Vec Model
llm2vec_model = load_llm2vec_model()
# 2.) Preprocess both audio and lyrics
audio_mm, lyrics_mm = single_preprocessing(audio_file, lyrics)
# 3.) Extract features
audio_features_mm = spectttra_predict(audio_mm)
audio_features_mm = audio_features_mm.reshape(1, -1)
lyrics_features = l2vec_single_train(llm2vec_model, lyrics_mm)
# 4.) Scale the vectors using Z-Score
audio_features_mm_scaled, lyrics_features_scaled = instance_scaler(
audio_features_mm, lyrics_features
)
# 5.) Reduce the lyrics using saved PCA model
reduced_lyrics = load_pca_model(lyrics_features_scaled)
# 6.) Concatenate the vectors
multimodal_features = np.concatenate(
[audio_features_mm_scaled, reduced_lyrics], axis=1
)
# Load MLP Classifier
multimodal_classifier = build_mlp(
input_dim=multimodal_features.shape[1], config=config
)
multimodal_classifier.load_model("models/mlp/mlp_best_multimodal.pth")
multimodal_classifier.model.eval()
# Run prediction
mm_confidence, mm_prediction, mm_label, mm_probability = (
multimodal_classifier.predict_single(multimodal_features.flatten())
)
multimodal_time = time.time() - multimodal_start
print(f"[Predict] Multimodal prediction completed in {multimodal_time:.2f}s")
# [2] Unimodal prediction (audio-only)
print("[Predict] Running audio-only prediction...")
audio_only_start = time.time()
# 1.) Preprocess the audio
audio_au = single_audio_preprocessing(audio_file)
# 2.) Extract audio features
audio_features_au = spectttra_predict(audio_au)
audio_features_au = audio_features_au.reshape(1, -1)
# 3.) Scale the vector using Z-Score
audio_features_au_scaled = audio_instance_scaler(audio_features_au)
# Load MLP Classifier
audio_classifier = build_mlp(
input_dim=audio_features_au_scaled.shape[1], config=config
)
audio_classifier.load_model("models/mlp/mlp_best_unimodal.pth")
audio_classifier.model.eval()
# Run prediction
au_confidence, au_prediction, au_label, au_probability = (
audio_classifier.predict_single(audio_features_au_scaled.flatten())
)
audio_only_time = time.time() - audio_only_start
print(f"[Predict] Audio-only prediction completed in {audio_only_time:.2f}s")
# Summary
total_time = time.time() - start_time
print("\n[Predict] Combined prediction completed!")
print(f"[Predict] Multimodal: {multimodal_time:.2f}s")
print(f"[Predict] Audio-only: {audio_only_time:.2f}s")
print(f"[Predict] Total: {total_time:.2f}s")
return {
"multimodal": {
"confidence": mm_confidence,
"prediction": mm_prediction,
"label": mm_label,
"probability": mm_probability,
},
"audio_only": {
"confidence": au_confidence,
"prediction": au_prediction,
"label": au_label,
"probability": au_probability,
},
"performance": {
"total_time_seconds": total_time,
"multimodal_time_seconds": multimodal_time,
"audio_only_time_seconds": audio_only_time,
},
}
if __name__ == "__main__":
# Example usage (replace with real inputs, place song inside data/raw.)
data = pd.read_csv("data/raw/predict_data_final.csv")
result = []
label = []
for row in data.itertuples():
prediction = predict_multimodal(row.song, row.lyrics)
result.append(
{
"song": row.song,
"label": row.label,
"predicted_label": prediction["label"],
"probability": prediction["probability"],
}
)
for r in result:
print(f"Song: {r['song']}")
print(f"Actual Label: {r['label']}")
print(f"Predicted: {r['predicted_label']}")
print(f"Confidence: {r['probability']: .8f}%")
print("-" * 50)
|