Kai Jennissen
commited on
added tools
Browse files
agent.py
CHANGED
|
@@ -3,7 +3,7 @@ from smolagents import (
|
|
| 3 |
CodeAgent,
|
| 4 |
DuckDuckGoSearchTool,
|
| 5 |
VisitWebpageTool,
|
| 6 |
-
|
| 7 |
OpenAIServerModel,
|
| 8 |
WikipediaSearchTool,
|
| 9 |
)
|
|
@@ -79,12 +79,26 @@ if Text('Accept cookies?').exists():
|
|
| 79 |
```<end_code>
|
| 80 |
"""
|
| 81 |
|
| 82 |
-
add_sys_prompt = """\n\
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
|
| 90 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
|
@@ -134,19 +148,24 @@ def get_agent():
|
|
| 134 |
description="A web agent that can search the web and visit webpages.",
|
| 135 |
verbosity_level=1,
|
| 136 |
)
|
|
|
|
| 137 |
mm_agent = CodeAgent(
|
| 138 |
tools=[
|
|
|
|
| 139 |
read_image,
|
| 140 |
transcribe_audio,
|
| 141 |
read_code,
|
| 142 |
run_video,
|
| 143 |
],
|
| 144 |
-
model=
|
|
|
|
|
|
|
| 145 |
max_steps=3,
|
| 146 |
name="Multimedia_Agent",
|
| 147 |
-
description="An agent that can
|
| 148 |
verbosity_level=1,
|
| 149 |
)
|
|
|
|
| 150 |
|
| 151 |
# Initialize the model
|
| 152 |
# vlm = InferenceClientModel(model_id="Qwen/Qwen2.5-Vision-32B", provider="together")
|
|
@@ -168,16 +187,15 @@ def get_agent():
|
|
| 168 |
# Import helium for the agent
|
| 169 |
# Create manager agent
|
| 170 |
manager_agent = CodeAgent(
|
| 171 |
-
tools=[
|
| 172 |
-
managed_agents=[
|
| 173 |
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
| 174 |
max_steps=5,
|
| 175 |
planning_interval=10,
|
| 176 |
additional_authorized_imports=["pandas", "numpy"],
|
| 177 |
-
verbosity_level=
|
| 178 |
)
|
| 179 |
|
| 180 |
-
manager_agent.prompt_templates["system_prompt"] += add_sys_prompt
|
| 181 |
return manager_agent
|
| 182 |
|
| 183 |
|
|
|
|
| 3 |
CodeAgent,
|
| 4 |
DuckDuckGoSearchTool,
|
| 5 |
VisitWebpageTool,
|
| 6 |
+
InferenceClientModel,
|
| 7 |
OpenAIServerModel,
|
| 8 |
WikipediaSearchTool,
|
| 9 |
)
|
|
|
|
| 79 |
```<end_code>
|
| 80 |
"""
|
| 81 |
|
| 82 |
+
add_sys_prompt = """\n\nWhen processing tasks with files:
|
| 83 |
+
|
| 84 |
+
1. Use the fetch_task_files tool with the URL provided to you to download and process files
|
| 85 |
+
2. Depending on the file type returned, use the appropriate specialized tool:
|
| 86 |
+
- For images: Use the data_url returned with read_image tool
|
| 87 |
+
- For audio: Use the audio data with transcribe_audio tool
|
| 88 |
+
- For code files: Use read_code tool
|
| 89 |
+
- For videos: Use run_video tool
|
| 90 |
+
|
| 91 |
+
3. When handling different file types:
|
| 92 |
+
- Images: The fetch_task_files tool will return a data_url you can use directly with read_image
|
| 93 |
+
- Code: Do not execute code files, analyze them as text
|
| 94 |
+
- Tabular data (CSV, Excel): Use pandas to analyze the data
|
| 95 |
+
- Videos: Extract relevant information from visual frames and audio
|
| 96 |
+
|
| 97 |
+
4. Keep answers concise and to the point. The answer is likely as simple as one word.
|
| 98 |
+
5. Make sure you provide the answer in accordance with the instruction provided in the question.
|
| 99 |
+
6. Do not return the raw result of tool calls as your final answer.
|
| 100 |
+
7. Do not add any additional information, explanation, unnecessary words or symbols.
|
| 101 |
+
"""
|
| 102 |
|
| 103 |
|
| 104 |
def initialize_tracing(enabled=True, provider="langfuse"):
|
|
|
|
| 148 |
description="A web agent that can search the web and visit webpages.",
|
| 149 |
verbosity_level=1,
|
| 150 |
)
|
| 151 |
+
|
| 152 |
mm_agent = CodeAgent(
|
| 153 |
tools=[
|
| 154 |
+
fetch_task_files,
|
| 155 |
read_image,
|
| 156 |
transcribe_audio,
|
| 157 |
read_code,
|
| 158 |
run_video,
|
| 159 |
],
|
| 160 |
+
model=InferenceClientModel(
|
| 161 |
+
model_id="Qwen/Qwen2.5-VL-32B-Instruct", # provider="together"
|
| 162 |
+
),
|
| 163 |
max_steps=3,
|
| 164 |
name="Multimedia_Agent",
|
| 165 |
+
description="An agent that can process and analyze images, audio, video, and other files. It needs to be provided with a valid URL to fetch the file.",
|
| 166 |
verbosity_level=1,
|
| 167 |
)
|
| 168 |
+
mm_agent.prompt_templates["system_prompt"] += add_sys_prompt
|
| 169 |
|
| 170 |
# Initialize the model
|
| 171 |
# vlm = InferenceClientModel(model_id="Qwen/Qwen2.5-Vision-32B", provider="together")
|
|
|
|
| 187 |
# Import helium for the agent
|
| 188 |
# Create manager agent
|
| 189 |
manager_agent = CodeAgent(
|
| 190 |
+
tools=[],
|
| 191 |
+
managed_agents=[mm_agent, web_agent],
|
| 192 |
model=OpenAIServerModel(model_id="gpt-4.1", temperature=0.1),
|
| 193 |
max_steps=5,
|
| 194 |
planning_interval=10,
|
| 195 |
additional_authorized_imports=["pandas", "numpy"],
|
| 196 |
+
verbosity_level=2,
|
| 197 |
)
|
| 198 |
|
|
|
|
| 199 |
return manager_agent
|
| 200 |
|
| 201 |
|
app.py
CHANGED
|
@@ -29,11 +29,13 @@ class BasicAgent:
|
|
| 29 |
|
| 30 |
# If task_id is provided, we'll include context about possible files
|
| 31 |
if task_id:
|
|
|
|
|
|
|
|
|
|
| 32 |
# Add context about files to the question
|
| 33 |
context = f"""Task ID: {task_id}
|
| 34 |
|
| 35 |
-
If
|
| 36 |
-
Example: fetch_task_files(task_id="{task_id}")
|
| 37 |
|
| 38 |
Question: {question}"""
|
| 39 |
|
|
|
|
| 29 |
|
| 30 |
# If task_id is provided, we'll include context about possible files
|
| 31 |
if task_id:
|
| 32 |
+
# API base URL for constructing file URLs
|
| 33 |
+
api_base_url = "https://agents-course-unit4-scoring.hf.space"
|
| 34 |
+
|
| 35 |
# Add context about files to the question
|
| 36 |
context = f"""Task ID: {task_id}
|
| 37 |
|
| 38 |
+
IMPORTANT: If the question mentions an image, file, or other media, construct the file URL using: {api_base_url}/files/{task_id}
|
|
|
|
| 39 |
|
| 40 |
Question: {question}"""
|
| 41 |
|
tools.py
CHANGED
|
@@ -549,18 +549,18 @@ def process_binary(response, filename, content_type):
|
|
| 549 |
|
| 550 |
|
| 551 |
@tool
|
| 552 |
-
def fetch_task_files(
|
| 553 |
"""
|
| 554 |
-
Download files
|
| 555 |
|
| 556 |
Args:
|
| 557 |
-
|
| 558 |
|
| 559 |
Returns:
|
| 560 |
dict: A dictionary containing file information and data in appropriate format for the file type
|
| 561 |
"""
|
| 562 |
-
|
| 563 |
-
|
| 564 |
|
| 565 |
try:
|
| 566 |
response = requests.get(files_url, timeout=15)
|
|
@@ -572,7 +572,7 @@ def fetch_task_files(task_id: str) -> Dict[str, Any]:
|
|
| 572 |
if "filename=" in filename:
|
| 573 |
filename = filename.split("filename=")[-1].strip('"')
|
| 574 |
else:
|
| 575 |
-
filename =
|
| 576 |
|
| 577 |
print(f"Received file: {filename}, type: {content_type}")
|
| 578 |
|
|
@@ -620,10 +620,10 @@ def fetch_task_files(task_id: str) -> Dict[str, Any]:
|
|
| 620 |
return process_binary(response, filename, content_type)
|
| 621 |
|
| 622 |
except requests.exceptions.RequestException as e:
|
| 623 |
-
print(f"Error fetching
|
| 624 |
return {"error": f"Error fetching files: {e}"}
|
| 625 |
except Exception as e:
|
| 626 |
-
print(f"An unexpected error occurred fetching files
|
| 627 |
return {"error": f"An unexpected error occurred: {e}"}
|
| 628 |
|
| 629 |
|
|
@@ -652,21 +652,23 @@ def search_wikipedia(query: str) -> str:
|
|
| 652 |
|
| 653 |
|
| 654 |
if __name__ == "__main__":
|
| 655 |
-
# Simple test for fetch_task_files
|
| 656 |
-
|
| 657 |
-
|
| 658 |
-
"
|
| 659 |
-
"
|
|
|
|
| 660 |
]
|
| 661 |
-
|
|
|
|
| 662 |
print(
|
| 663 |
"=" * 20
|
| 664 |
+ " "
|
| 665 |
-
+ f"Testing fetch_task_files with
|
| 666 |
+ " "
|
| 667 |
+ "=" * 20
|
| 668 |
)
|
| 669 |
|
| 670 |
-
result = fetch_task_files(
|
| 671 |
print(f"File type: {result.get('file_type')}")
|
| 672 |
print(f"Filename: {result.get('filename')}")
|
|
|
|
| 549 |
|
| 550 |
|
| 551 |
@tool
|
| 552 |
+
def fetch_task_files(url: str) -> Dict[str, Any]:
|
| 553 |
"""
|
| 554 |
+
Download files from a given URL.
|
| 555 |
|
| 556 |
Args:
|
| 557 |
+
url (str): Direct URL to the file to download.
|
| 558 |
|
| 559 |
Returns:
|
| 560 |
dict: A dictionary containing file information and data in appropriate format for the file type
|
| 561 |
"""
|
| 562 |
+
files_url = url
|
| 563 |
+
print(f"Fetching file from: {files_url}")
|
| 564 |
|
| 565 |
try:
|
| 566 |
response = requests.get(files_url, timeout=15)
|
|
|
|
| 572 |
if "filename=" in filename:
|
| 573 |
filename = filename.split("filename=")[-1].strip('"')
|
| 574 |
else:
|
| 575 |
+
filename = "file.bin" # Default filename
|
| 576 |
|
| 577 |
print(f"Received file: {filename}, type: {content_type}")
|
| 578 |
|
|
|
|
| 620 |
return process_binary(response, filename, content_type)
|
| 621 |
|
| 622 |
except requests.exceptions.RequestException as e:
|
| 623 |
+
print(f"Error fetching url: {files_url} - {e}")
|
| 624 |
return {"error": f"Error fetching files: {e}"}
|
| 625 |
except Exception as e:
|
| 626 |
+
print(f"An unexpected error occurred fetching files from url: {files_url}- {e}")
|
| 627 |
return {"error": f"An unexpected error occurred: {e}"}
|
| 628 |
|
| 629 |
|
|
|
|
| 652 |
|
| 653 |
|
| 654 |
if __name__ == "__main__":
|
| 655 |
+
# Simple test for fetch_task_files with direct URLs
|
| 656 |
+
api_base = "https://agents-course-unit4-scoring.hf.space"
|
| 657 |
+
test_urls = [
|
| 658 |
+
f"{api_base}/files/cca530fc-4052-43b2-b130-b30968d8aa44",
|
| 659 |
+
f"{api_base}/files/99c9cc74-fdc8-46c6-8f8d-3ce2d3bfeea3",
|
| 660 |
+
f"{api_base}/files/7bd855d8-463d-4ed5-93ca-5fe35145f733",
|
| 661 |
]
|
| 662 |
+
|
| 663 |
+
for url in test_urls:
|
| 664 |
print(
|
| 665 |
"=" * 20
|
| 666 |
+ " "
|
| 667 |
+
+ f"Testing fetch_task_files with URL: {url}"
|
| 668 |
+ " "
|
| 669 |
+ "=" * 20
|
| 670 |
)
|
| 671 |
|
| 672 |
+
result = fetch_task_files(url)
|
| 673 |
print(f"File type: {result.get('file_type')}")
|
| 674 |
print(f"Filename: {result.get('filename')}")
|