File size: 14,456 Bytes
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c614723
8a229fe
 
d442533
 
 
 
 
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d442533
 
 
 
 
ec3fb4b
d442533
 
 
c72fcf7
d442533
 
 
 
 
c72fcf7
d442533
 
 
ec3fb4b
d442533
ec3fb4b
d442533
 
 
 
ec3fb4b
d442533
 
 
ec3fb4b
d442533
 
 
ec3fb4b
d442533
 
 
ec3fb4b
d442533
 
 
c72fcf7
d442533
 
 
c72fcf7
d442533
c72fcf7
d442533
 
 
 
ec3fb4b
d442533
ec3fb4b
d442533
 
 
 
 
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a229fe
ec3fb4b
8a229fe
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a229fe
 
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c26f17
d442533
 
 
8a229fe
 
ec3fb4b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c614723
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
#!/usr/bin/env python3
"""
Zero-shot inference script for demo images using Hugging Face models.
Runs inference on images in demo/iwildcam_demo_images using specified models
and saves results to JSON files.
"""

import os
import json
import torch
import numpy as np
from PIL import Image
from transformers import pipeline
from collections import OrderedDict
import warnings
warnings.filterwarnings("ignore")

try:
    import open_clip
    OPEN_CLIP_AVAILABLE = True
except ImportError:
    OPEN_CLIP_AVAILABLE = False

# Species mapping from demo/app.py (African Wild Dog removed)
SPECIES_MAP = OrderedDict([
    (24, "Jaguar"),           # panthera onca
    (10, "Ocelot"),           # leopardus pardalis
    (6, "Mountain Lion"),     # puma concolor
    (101, "Common Eland"),    # tragelaphus oryx
    (102, "Waterbuck"),       # kobus ellipsiprymnus
])

# Class names
CLASS_NAMES = list(SPECIES_MAP.values())

# More descriptive class names for better zero-shot performance
DESCRIPTIVE_CLASS_NAMES = [
    "a jaguar cat",
    "an ocelot cat",
    "a mountain lion cougar",
    "a common eland antelope",
    "a waterbuck antelope"
]

# Models to test
MODELS = [
    "openai/clip-vit-large-patch14",
    "google/siglip2-large-patch16-384",
    "google/siglip2-large-patch16-512",
    "google/siglip2-so400m-patch16-naflex",

    # using bioclip codebase instead
    # "imageomics/bioclip",
    # "imageomics/bioclip-2",

    "facebook/PE-Core-L14-336",
    "laion/CLIP-ViT-L-14-laion2B-s32B-b82K"
]

def load_demo_annotations():
    """Load the demo annotations to get image metadata."""
    with open('iwildcam_demo_annotations.json', 'r') as f:
        data = json.load(f)

    # Create mapping from filename to metadata
    image_metadata = {}
    for annotation in data['annotations']:
        image_id = annotation['image_id']
        category_id = annotation['category_id']
        image_info = next((img for img in data['images'] if img['id'] == image_id), None)
        if image_info:
            image_metadata[image_info['file_name']] = {
                'species_id': category_id,
                'species_name': SPECIES_MAP.get(category_id, "Unknown")
            }

    return image_metadata

# def run_bioclip_inference(model_name, image_paths, class_names):
#     """Run zero-shot inference using BioCLIP via OpenCLIP."""
#     if not OPEN_CLIP_AVAILABLE:
#         print("open_clip is not available. Please install it with: pip install open_clip_torch")
#         return None

#     print(f"Loading BioCLIP model: {model_name}")
#     try:
#         device = "cuda" if torch.cuda.is_available() else "cpu"

#         # Load model using OpenCLIP with hf-hub prefix
#         model, _, preprocess = open_clip.create_model_and_transforms(f'hf-hub:{model_name}')
#         model = model.to(device)
#         model.eval()
#         tokenizer = open_clip.get_tokenizer(f'hf-hub:{model_name}')

#         # Prepare text prompts
#         prompts = [f"a photo of a {class_name.lower()}" for class_name in class_names]
#         text_tokens = tokenizer(prompts).to(device)

#         results = {}

#         with torch.no_grad():
#             # Encode text once
#             text_features = model.encode_text(text_tokens)
#             text_features /= text_features.norm(dim=-1, keepdim=True)

#             for i, image_path in enumerate(image_paths):
#                 if i % 10 == 0:
#                     print(f"Processing image {i+1}/{len(image_paths)}: {os.path.basename(image_path)}")

#                 try:
#                     image = Image.open(image_path).convert("RGB")
#                     image_tensor = preprocess(image).unsqueeze(0).to(device)

#                     # Encode image
#                     image_features = model.encode_image(image_tensor)
#                     image_features /= image_features.norm(dim=-1, keepdim=True)

#                     # Calculate similarity and convert to probabilities
#                     similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
#                     probabilities = similarity.squeeze(0).cpu().numpy()

#                     scores = {}
#                     for j, class_name in enumerate(class_names):
#                         scores[class_name] = float(probabilities[j])

#                     results[os.path.basename(image_path)] = scores

#                 except Exception as e:
#                     print(f"Error processing {image_path}: {e}")
#                     uniform_prob = 1.0 / len(class_names)
#                     results[os.path.basename(image_path)] = {class_name: uniform_prob for class_name in class_names}

#         return results

#     except Exception as e:
#         print(f"Error loading BioCLIP: {e}")
#         import traceback
#         traceback.print_exc()
#         return None

def run_openclip_inference(model_name, image_paths, class_names):
    """Run zero-shot inference using OpenCLIP models."""
    if not OPEN_CLIP_AVAILABLE:
        print("open_clip is not available. Please install it with: pip install open_clip_torch")
        return None

    print(f"Loading OpenCLIP model: {model_name}")
    try:
        device = "cuda" if torch.cuda.is_available() else "cpu"

        # Map HuggingFace model names to OpenCLIP format
        if model_name == "facebook/PE-Core-L14-336":
            model, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='metaclip_fullcc')
        elif model_name == "laion/CLIP-ViT-L-14-laion2B-s32B-b82K":
            model, _, preprocess = open_clip.create_model_and_transforms('ViT-L-14', pretrained='laion2b_s32b_b82k')
        else:
            print(f"Unknown OpenCLIP model: {model_name}")
            return None

        model = model.to(device)
        model.eval()
        tokenizer = open_clip.get_tokenizer('ViT-L-14')

        # Prepare text prompts
        prompts = [f"a photo of a {class_name.lower()}" for class_name in class_names]
        text_tokens = tokenizer(prompts).to(device)

        results = {}

        with torch.no_grad():
            # Encode text once
            text_features = model.encode_text(text_tokens)
            text_features /= text_features.norm(dim=-1, keepdim=True)

            for i, image_path in enumerate(image_paths):
                if i % 10 == 0:
                    print(f"Processing image {i+1}/{len(image_paths)}: {os.path.basename(image_path)}")

                try:
                    image = Image.open(image_path).convert("RGB")
                    image_tensor = preprocess(image).unsqueeze(0).to(device)

                    # Encode image
                    image_features = model.encode_image(image_tensor)
                    image_features /= image_features.norm(dim=-1, keepdim=True)

                    # Calculate similarity and convert to probabilities
                    similarity = (100.0 * image_features @ text_features.T).softmax(dim=-1)
                    probabilities = similarity.squeeze(0).cpu().numpy()

                    scores = {}
                    for j, class_name in enumerate(class_names):
                        scores[class_name] = float(probabilities[j])

                    results[os.path.basename(image_path)] = scores

                except Exception as e:
                    print(f"Error processing {image_path}: {e}")
                    uniform_prob = 1.0 / len(class_names)
                    results[os.path.basename(image_path)] = {class_name: uniform_prob for class_name in class_names}

        return results

    except Exception as e:
        print(f"Error loading OpenCLIP model {model_name}: {e}")
        return None

def run_siglip_inference(model_name, image_paths, class_names):
    """Run zero-shot inference using SigLIP with manual CLIP-style computation."""
    print(f"Loading SigLIP model: {model_name}")
    try:
        from transformers import AutoProcessor, AutoModel
        processor = AutoProcessor.from_pretrained(model_name)
        model = AutoModel.from_pretrained(model_name)

        device = "cuda" if torch.cuda.is_available() else "cpu"
        model = model.to(device)
        model.eval()

        results = {}

        with torch.no_grad():
            for i, image_path in enumerate(image_paths):
                if i % 10 == 0:
                    print(f"Processing image {i+1}/{len(image_paths)}: {os.path.basename(image_path)}")

                try:
                    image = Image.open(image_path).convert("RGB")
                    prompts = [f"This is a photo of a {class_name.lower()}" for class_name in class_names]
                    inputs = processor(
                        text=prompts,
                        images=image,
                        return_tensors="pt",
                        padding="max_length",
                        truncation=True
                    ).to(device)

                    outputs = model(**inputs)
                    logits_per_image = outputs.logits_per_image
                    sigmoid_probs = torch.sigmoid(logits_per_image).squeeze(0)
                    probabilities = torch.softmax(logits_per_image, dim=-1).squeeze(0)

                    scores = {}
                    for j, class_name in enumerate(class_names):
                        scores[class_name] = probabilities[j].item()

                    results[os.path.basename(image_path)] = scores

                except Exception as e:
                    print(f"Error processing {image_path}: {e}")
                    results[os.path.basename(image_path)] = {class_name: 0.0 for class_name in class_names}

        return results

    except Exception as e:
        print(f"Error loading SigLIP: {e}")
        return None

def run_zeroshot_inference(model_name, image_paths, class_names):
    """Run zero-shot inference using specified model."""
    print(f"Loading model: {model_name}")

    try:
        # Create zero-shot image classification pipeline
        classifier = pipeline(
            "zero-shot-image-classification",
            model=model_name,
            device=0 if torch.cuda.is_available() else -1
        )

        results = {}

        for i, image_path in enumerate(image_paths):
            if i % 10 == 0:
                print(f"Processing image {i+1}/{len(image_paths)}: {os.path.basename(image_path)}")

            try:
                image = Image.open(image_path).convert("RGB")
                prompts = [f"a photo of a {class_name.lower()}" for class_name in class_names]
                outputs = classifier(image, prompts)

                scores = {}
                for output in outputs:
                    prompt = output['label']
                    # Find corresponding class name
                    for i, p in enumerate(prompts):
                        if p == prompt:
                            class_name = class_names[i]
                            scores[class_name] = output['score']
                            break

                # Ensure all classes are present (fill missing with 0)
                for class_name in class_names:
                    if class_name not in scores:
                        scores[class_name] = 0.0

                results[os.path.basename(image_path)] = scores

            except Exception as e:
                print(f"Error processing {image_path}: {e}")
                # Fill with zeros if processing fails
                results[os.path.basename(image_path)] = {class_name: 0.0 for class_name in class_names}

        return results

    except Exception as e:
        print(f"Error loading model {model_name}: {e}")
        return None

def main():
    """Main function to run zero-shot inference on all models."""
    # Get list of demo images
    image_dir = "iwildcam_demo_images"
    image_files = [f for f in os.listdir(image_dir) if f.endswith('.jpg')]
    image_paths = [os.path.join(image_dir, f) for f in image_files]

    print(f"Found {len(image_files)} demo images")

    # Load annotations for reference
    image_metadata = load_demo_annotations()
    print(f"Loaded metadata for {len(image_metadata)} images")

    # Run inference for each model
    for model_name in MODELS:
        print(f"\n{'='*60}")
        print(f"Running inference with {model_name}")
        print(f"{'='*60}")

        # Check if results already exist
        model_safe_name = model_name.replace("/", "_").replace("-", "_")
        output_file = f"zeroshot_results_{model_safe_name}.json"

        if os.path.exists(output_file):
            print(f"Results file {output_file} already exists, skipping {model_name}")
            continue

        # Handle different models with appropriate methods
        if model_name in ["imageomics/bioclip", "imageomics/bioclip-2"]:
            # results = run_bioclip_inference(model_name, image_paths, CLASS_NAMES)
            print("Use pybioclip!")
            return
        elif model_name.startswith("google/siglip"):
            results = run_siglip_inference(model_name, image_paths, CLASS_NAMES)
        elif model_name in ["facebook/PE-Core-L14-336", "laion/CLIP-ViT-L-14-laion2B-s32B-b82K"]:
            results = run_openclip_inference(model_name, image_paths, CLASS_NAMES)
        else:
            results = run_zeroshot_inference(model_name, image_paths, CLASS_NAMES)

        if results is not None:
            # Add metadata to results
            output_data = {
                "model": model_name,
                "class_names": CLASS_NAMES,
                "num_images": len(results),
                "results": results
            }

            with open(output_file, 'w') as f:
                json.dump(output_data, f, indent=2)

            print(f"Results saved to {output_file}")

            # Print sample results
            sample_images = list(results.keys())[:3]
            print(f"\nSample results from {model_name}:")
            for img in sample_images:
                print(f"  {img}:")
                scores = results[img]
                # Show top 3 predictions
                sorted_scores = sorted(scores.items(), key=lambda x: x[1], reverse=True)
                for class_name, score in sorted_scores[:3]:
                    print(f"    {class_name}: {score:.4f}")
        else:
            print(f"Failed to run inference with {model_name}")

if __name__ == "__main__":
    # Change to demo directory
    os.chdir(os.path.dirname(os.path.abspath(__file__)))
    main()