Spaces:
Sleeping
Sleeping
code update for streamlit
Browse files- app.py +49 -107
- requirements.txt +3 -0
app.py
CHANGED
|
@@ -1,10 +1,8 @@
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import requests
|
|
|
|
| 4 |
from dotenv import load_dotenv
|
| 5 |
-
from fastapi import FastAPI, HTTPException, UploadFile, File
|
| 6 |
-
from fastapi.middleware.cors import CORSMiddleware
|
| 7 |
-
from pydantic import BaseModel
|
| 8 |
from PyPDF2 import PdfReader
|
| 9 |
from langchain.text_splitter import CharacterTextSplitter
|
| 10 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
@@ -12,27 +10,14 @@ from langchain.vectorstores import FAISS
|
|
| 12 |
from langchain.chains.question_answering import load_qa_chain
|
| 13 |
from langchain.llms import HuggingFacePipeline
|
| 14 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
| 15 |
-
import streamlit as st
|
| 16 |
|
| 17 |
# Disable WANDB
|
| 18 |
os.environ['WANDB_DISABLED'] = "true"
|
| 19 |
|
| 20 |
# Constants
|
| 21 |
MODEL_PATH = "/home/lab/halyn/gemma/halyn/paper/models/gemma-2-9b-it"
|
| 22 |
-
FASTAPI_URL = "http://203.249.64.50:8080" # 서버 주소
|
| 23 |
-
|
| 24 |
-
app = FastAPI()
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
app.add_middleware(
|
| 28 |
-
CORSMiddleware,
|
| 29 |
-
allow_origins=["*"], # 모든 출처 허용
|
| 30 |
-
allow_credentials=True,
|
| 31 |
-
allow_methods=["*"],
|
| 32 |
-
allow_headers=["*"],
|
| 33 |
-
)
|
| 34 |
-
|
| 35 |
-
# Global variables to store the knowledge base and QA chain
|
| 36 |
knowledge_base = None
|
| 37 |
qa_chain = None
|
| 38 |
|
|
@@ -40,7 +25,7 @@ def load_pdf(pdf_file):
|
|
| 40 |
"""
|
| 41 |
Load and extract text from a PDF.
|
| 42 |
Args:
|
| 43 |
-
pdf_file (str)
|
| 44 |
Returns:
|
| 45 |
str: Extracted text from the PDF.
|
| 46 |
"""
|
|
@@ -52,9 +37,9 @@ def split_text(text):
|
|
| 52 |
"""
|
| 53 |
Split the extracted text into chunks.
|
| 54 |
Args:
|
| 55 |
-
text (str)
|
| 56 |
Returns:
|
| 57 |
-
list
|
| 58 |
"""
|
| 59 |
text_splitter = CharacterTextSplitter(
|
| 60 |
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
|
@@ -65,9 +50,9 @@ def create_knowledge_base(chunks):
|
|
| 65 |
"""
|
| 66 |
Create a FAISS knowledge base from text chunks.
|
| 67 |
Args:
|
| 68 |
-
chunks (list)
|
| 69 |
Returns:
|
| 70 |
-
FAISS: A FAISS knowledge base object
|
| 71 |
"""
|
| 72 |
embeddings = HuggingFaceEmbeddings()
|
| 73 |
return FAISS.from_texts(chunks, embeddings)
|
|
@@ -76,7 +61,7 @@ def load_model(model_path):
|
|
| 76 |
"""
|
| 77 |
Load the HuggingFace model and tokenizer, and create a text-generation pipeline.
|
| 78 |
Args:
|
| 79 |
-
model_path (str)
|
| 80 |
Returns:
|
| 81 |
pipeline: A HuggingFace pipeline for text generation.
|
| 82 |
"""
|
|
@@ -84,56 +69,14 @@ def load_model(model_path):
|
|
| 84 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 85 |
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
|
|
|
| 90 |
global qa_chain
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
try:
|
| 95 |
-
pipe = load_model(MODEL_PATH)
|
| 96 |
-
llm = HuggingFacePipeline(pipeline=pipe)
|
| 97 |
-
qa_chain = load_qa_chain(llm, chain_type="stuff")
|
| 98 |
-
except Exception as e:
|
| 99 |
-
print(f"Error loading model: {e}")
|
| 100 |
-
raise HTTPException(status_code=500, detail="Failed to load the language model")
|
| 101 |
-
|
| 102 |
-
@app.post("/upload_pdf")
|
| 103 |
-
async def upload_pdf(file: UploadFile = File(...)):
|
| 104 |
-
global knowledge_base
|
| 105 |
-
try:
|
| 106 |
-
contents = await file.read()
|
| 107 |
-
pdf_file = io.BytesIO(contents)
|
| 108 |
-
text = load_pdf(pdf_file)
|
| 109 |
-
chunks = split_text(text)
|
| 110 |
-
knowledge_base = create_knowledge_base(chunks)
|
| 111 |
-
return {"message": "PDF uploaded and processed successfully"}
|
| 112 |
-
except Exception as e:
|
| 113 |
-
raise HTTPException(status_code=400, detail=f"Failed to process PDF: {str(e)}")
|
| 114 |
-
|
| 115 |
-
class Question(BaseModel):
|
| 116 |
-
text: str
|
| 117 |
-
|
| 118 |
-
@app.post("/ask")
|
| 119 |
-
async def ask_question(question: Question):
|
| 120 |
-
global knowledge_base, qa_chain
|
| 121 |
-
if not knowledge_base:
|
| 122 |
-
raise HTTPException(status_code=400, detail="No PDF has been uploaded yet")
|
| 123 |
-
if not qa_chain:
|
| 124 |
-
raise HTTPException(status_code=500, detail="QA chain is not initialized")
|
| 125 |
-
|
| 126 |
-
try:
|
| 127 |
-
docs = knowledge_base.similarity_search(question.text)
|
| 128 |
-
response = qa_chain.run(input_documents=docs, question=question.text)
|
| 129 |
-
|
| 130 |
-
if "Helpful Answer:" in response:
|
| 131 |
-
response = response.split("Helpful Answer:")[1].strip()
|
| 132 |
-
|
| 133 |
-
return {"response": response}
|
| 134 |
-
except Exception as e:
|
| 135 |
-
raise HTTPException(status_code=500, detail=f"Error processing question: {str(e)}")
|
| 136 |
-
|
| 137 |
|
| 138 |
# Streamlit UI
|
| 139 |
def main_page():
|
|
@@ -146,23 +89,24 @@ def main_page():
|
|
| 146 |
st.write("Please click the button below.")
|
| 147 |
|
| 148 |
if st.button("Click Here :)"):
|
| 149 |
-
# FastAPI 서버에 PDF 파일 전송
|
| 150 |
try:
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
st.
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
def chat_page():
|
| 164 |
-
st.title(f"
|
| 165 |
-
st.subheader(f"Ask anything about {st.session_state.paper_name}")
|
| 166 |
|
| 167 |
if "messages" not in st.session_state:
|
| 168 |
st.session_state.messages = []
|
|
@@ -170,37 +114,40 @@ def chat_page():
|
|
| 170 |
for message in st.session_state.messages:
|
| 171 |
with st.chat_message(message["role"]):
|
| 172 |
st.markdown(message["content"])
|
| 173 |
-
|
| 174 |
-
if prompt := st.chat_input("Chat here
|
| 175 |
-
# Add user message to chat history
|
| 176 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 177 |
|
| 178 |
-
# Display user message in chat message container
|
| 179 |
with st.chat_message("user"):
|
| 180 |
st.markdown(prompt)
|
| 181 |
|
| 182 |
-
|
| 183 |
-
response = get_response_from_fastapi(prompt)
|
| 184 |
|
| 185 |
-
# Display assistant response in chat message container
|
| 186 |
with st.chat_message("assistant"):
|
| 187 |
st.markdown(response)
|
| 188 |
|
| 189 |
-
# Add assistant response to chat history
|
| 190 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 191 |
|
| 192 |
if st.button("Go back to main page"):
|
| 193 |
st.session_state.page = "main"
|
| 194 |
|
| 195 |
-
def
|
| 196 |
try:
|
| 197 |
-
|
| 198 |
-
if
|
| 199 |
-
return
|
| 200 |
-
|
| 201 |
-
return
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
|
| 205 |
# Streamlit - 초기 페이지 설정
|
| 206 |
if "page" not in st.session_state:
|
|
@@ -215,8 +162,3 @@ if st.session_state.page == "main":
|
|
| 215 |
main_page()
|
| 216 |
elif st.session_state.page == "chat":
|
| 217 |
chat_page()
|
| 218 |
-
|
| 219 |
-
# FastAPI 앱 실행을 위한 코드
|
| 220 |
-
if __name__ == "__main__":
|
| 221 |
-
import uvicorn
|
| 222 |
-
uvicorn.run(app, host="0.0.0.0", port=8050)
|
|
|
|
| 1 |
import os
|
| 2 |
import io
|
| 3 |
import requests
|
| 4 |
+
import streamlit as st
|
| 5 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
|
|
| 6 |
from PyPDF2 import PdfReader
|
| 7 |
from langchain.text_splitter import CharacterTextSplitter
|
| 8 |
from langchain.embeddings.huggingface import HuggingFaceEmbeddings
|
|
|
|
| 10 |
from langchain.chains.question_answering import load_qa_chain
|
| 11 |
from langchain.llms import HuggingFacePipeline
|
| 12 |
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
|
|
|
|
| 13 |
|
| 14 |
# Disable WANDB
|
| 15 |
os.environ['WANDB_DISABLED'] = "true"
|
| 16 |
|
| 17 |
# Constants
|
| 18 |
MODEL_PATH = "/home/lab/halyn/gemma/halyn/paper/models/gemma-2-9b-it"
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Global variables
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
knowledge_base = None
|
| 22 |
qa_chain = None
|
| 23 |
|
|
|
|
| 25 |
"""
|
| 26 |
Load and extract text from a PDF.
|
| 27 |
Args:
|
| 28 |
+
pdf_file (str): The PDF file.
|
| 29 |
Returns:
|
| 30 |
str: Extracted text from the PDF.
|
| 31 |
"""
|
|
|
|
| 37 |
"""
|
| 38 |
Split the extracted text into chunks.
|
| 39 |
Args:
|
| 40 |
+
text (str): The full text extracted from the PDF.
|
| 41 |
Returns:
|
| 42 |
+
list: A list of text chunks.
|
| 43 |
"""
|
| 44 |
text_splitter = CharacterTextSplitter(
|
| 45 |
separator="\n", chunk_size=1000, chunk_overlap=200, length_function=len
|
|
|
|
| 50 |
"""
|
| 51 |
Create a FAISS knowledge base from text chunks.
|
| 52 |
Args:
|
| 53 |
+
chunks (list): A list of text chunks.
|
| 54 |
Returns:
|
| 55 |
+
FAISS: A FAISS knowledge base object.
|
| 56 |
"""
|
| 57 |
embeddings = HuggingFaceEmbeddings()
|
| 58 |
return FAISS.from_texts(chunks, embeddings)
|
|
|
|
| 61 |
"""
|
| 62 |
Load the HuggingFace model and tokenizer, and create a text-generation pipeline.
|
| 63 |
Args:
|
| 64 |
+
model_path (str): The path to the pre-trained model.
|
| 65 |
Returns:
|
| 66 |
pipeline: A HuggingFace pipeline for text generation.
|
| 67 |
"""
|
|
|
|
| 69 |
model = AutoModelForCausalLM.from_pretrained(model_path)
|
| 70 |
return pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150, temperature=0.1)
|
| 71 |
|
| 72 |
+
def setup_qa_chain():
|
| 73 |
+
"""
|
| 74 |
+
Set up the question-answering chain.
|
| 75 |
+
"""
|
| 76 |
global qa_chain
|
| 77 |
+
pipe = load_model(MODEL_PATH)
|
| 78 |
+
llm = HuggingFacePipeline(pipeline=pipe)
|
| 79 |
+
qa_chain = load_qa_chain(llm, chain_type="stuff")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
# Streamlit UI
|
| 82 |
def main_page():
|
|
|
|
| 89 |
st.write("Please click the button below.")
|
| 90 |
|
| 91 |
if st.button("Click Here :)"):
|
|
|
|
| 92 |
try:
|
| 93 |
+
# PDF 파일 처리
|
| 94 |
+
contents = paper.read()
|
| 95 |
+
pdf_file = io.BytesIO(contents)
|
| 96 |
+
text = load_pdf(pdf_file)
|
| 97 |
+
chunks = split_text(text)
|
| 98 |
+
global knowledge_base
|
| 99 |
+
knowledge_base = create_knowledge_base(chunks)
|
| 100 |
+
|
| 101 |
+
st.success("PDF successfully processed! You can now ask questions.")
|
| 102 |
+
st.session_state.paper_name = paper.name[:-4]
|
| 103 |
+
st.session_state.page = "chat"
|
| 104 |
+
setup_qa_chain()
|
| 105 |
+
except Exception as e:
|
| 106 |
+
st.error(f"Failed to process the PDF: {str(e)}")
|
| 107 |
|
| 108 |
def chat_page():
|
| 109 |
+
st.title(f"Ask anything about {st.session_state.paper_name}")
|
|
|
|
| 110 |
|
| 111 |
if "messages" not in st.session_state:
|
| 112 |
st.session_state.messages = []
|
|
|
|
| 114 |
for message in st.session_state.messages:
|
| 115 |
with st.chat_message(message["role"]):
|
| 116 |
st.markdown(message["content"])
|
| 117 |
+
|
| 118 |
+
if prompt := st.chat_input("Chat here!"):
|
|
|
|
| 119 |
st.session_state.messages.append({"role": "user", "content": prompt})
|
| 120 |
|
|
|
|
| 121 |
with st.chat_message("user"):
|
| 122 |
st.markdown(prompt)
|
| 123 |
|
| 124 |
+
response = get_response_from_model(prompt)
|
|
|
|
| 125 |
|
|
|
|
| 126 |
with st.chat_message("assistant"):
|
| 127 |
st.markdown(response)
|
| 128 |
|
|
|
|
| 129 |
st.session_state.messages.append({"role": "assistant", "content": response})
|
| 130 |
|
| 131 |
if st.button("Go back to main page"):
|
| 132 |
st.session_state.page = "main"
|
| 133 |
|
| 134 |
+
def get_response_from_model(prompt):
|
| 135 |
try:
|
| 136 |
+
global knowledge_base, qa_chain
|
| 137 |
+
if not knowledge_base:
|
| 138 |
+
return "No PDF has been uploaded yet."
|
| 139 |
+
if not qa_chain:
|
| 140 |
+
return "QA chain is not initialized."
|
| 141 |
+
|
| 142 |
+
docs = knowledge_base.similarity_search(prompt)
|
| 143 |
+
response = qa_chain.run(input_documents=docs, question=prompt)
|
| 144 |
+
|
| 145 |
+
if "Helpful Answer:" in response:
|
| 146 |
+
response = response.split("Helpful Answer:")[1].strip()
|
| 147 |
+
|
| 148 |
+
return response
|
| 149 |
+
except Exception as e:
|
| 150 |
+
return f"Error: {str(e)}"
|
| 151 |
|
| 152 |
# Streamlit - 초기 페이지 설정
|
| 153 |
if "page" not in st.session_state:
|
|
|
|
| 162 |
main_page()
|
| 163 |
elif st.session_state.page == "chat":
|
| 164 |
chat_page()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
|
@@ -1,3 +1,6 @@
|
|
| 1 |
streamlit
|
| 2 |
requests
|
| 3 |
PyPDF2
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
streamlit
|
| 2 |
requests
|
| 3 |
PyPDF2
|
| 4 |
+
dotenv
|
| 5 |
+
langchain
|
| 6 |
+
transformers
|