File size: 6,249 Bytes
9717c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d0aa029
9717c3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import os from "node:os"
import path from "node:path"
import express from "express"
import { python } from "pythonia"

import { daisy } from "./daisy.mts"
import { alpine } from "./alpine.mts"

const transformers = await python('transformers')
const { AutoGPTQForCausalLM, BaseQuantizeConfig } = await python ('auto_gptq')

const modelName = "TheBloke/WizardCoder-15B-1.0-GPTQ"

const use_triton = false // no NVIDIA Triton Inference Server

const tokenizer = await transformers.AutoTokenizer.from_pretrained$(modelName, { use_fast: true })

const model = await AutoGPTQForCausalLM.from_quantized$(modelName, {
  use_safetensors: true,
  device: 'cuda:0',
  use_triton: false,
  quantize_config: null
})

// Prevent printing spurious transformers error when using pipeline with AutoGPTQ
await transformers.logging.set_verbosity(transformers.logging.CRITICAL)

const pipe = await transformers.pipeline$("text-generation", { model, tokenizer })


// define the CSS and JS dependencies
const css = [
  "/css/[email protected]",
].map(item => `<link href="${item}" rel="stylesheet" type="text/css"/>`)
.join("")

const script = [
  "/js/[email protected]",
  "/js/[email protected]"
].map(item => `<script src="${item}"></script>`)
.join("")

const app = express()
const port = 7860

const minPromptSize = 16 // if you change this, you will need to also change in public/index.html
const timeoutInSec = 60 * 60

console.log("timeout set to 60 minutes")

app.use(express.static("public"))
 
const maxParallelRequests = 1

const pending: {
  total: number;
  queue: string[];
} = {
  total: 0,
  queue: [],
}
 
const endRequest = (id: string, reason: string) => {
  if (!id || !pending.queue.includes(id)) {
    return
  }
  
  pending.queue = pending.queue.filter(i => i !== id)
  console.log(`request ${id} ended (${reason})`)
}

// we need to exit the open Python process or else it will keep running in the background
process.on('SIGINT', () => {
  try {
    (python as any).exit()
  } catch (err) {
    // exiting Pythonia can get a bit messy: try/catch or not,
    // you *will* see warnings and tracebacks in the console
  }
  process.exit(0)
})

app.get("/debug", (req, res) => {
  res.write(JSON.stringify({
    nbTotal: pending.total,
    nbPending: pending.queue.length,
    queue: pending.queue,
  }))
  res.end()
})

app.get("/app", async (req, res) => {

  if (`${req.query.prompt}`.length < minPromptSize) {
    res.write(`prompt too short, please enter at least ${minPromptSize} characters`)
    res.end()
    return
  }
  // naive implementation: we say we are out of capacity
  if (pending.queue.length >= maxParallelRequests) {
    res.write("sorry, max nb of parallel requests reached")
    res.end()
    return
  }
  // alternative approach: kill old queries
  // while (pending.queue.length > maxParallelRequests) {
  //   endRequest(pending.queue[0], 'max nb of parallel request reached')
  // }

  const id = `${pending.total++}`
  console.log(`new request ${id}`)

  pending.queue.push(id)

  const prefix = `<html><head>${css}${script}`
  res.write(prefix)

  req.on("close", function() {
    // console.log("browser asked to close the stream for some reason.. let's ignore!")
    endRequest(id, "browser asked to end the connection")
  })

  // for testing we kill after some delay
  setTimeout(() => {
    endRequest(id, `timed out after ${timeoutInSec}s`)
  }, timeoutInSec * 1000)


  const finalPrompt = `# Context
Generate this webapp: ${req.query.prompt}.
# Documentation
${daisy}
# Guidelines
- Do not write a tutorial! This is a web app!
- Never repeat the instruction, instead directly write the final code within a script tag
- Use a color scheme consistent with the brief and theme
- You need to use Tailwind CSS and DaisyUI for the UI, pure vanilla JS and AlpineJS for the JS.
- All the JS code will be written directly inside the page, using <script type="text/javascript">...</script>
- You MUST use English, not Latin! (I repeat: do NOT write lorem ipsum!)
- No need to write code comments, and try to make the code compact (short function names etc)
- Use a central layout by wrapping everything in a \`<div class="flex flex-col items-center">\`
# HTML Code of the final app:
${prefix}`

      
  try {

    // be careful: if you input a prompt which is too large, you may experience a timeout
    // const inputTokens = await llm.tokenize(finalPrompt)
    console.log("initializing the generator (may take 30s or more)")

    const query = "How do I sort a list in Python?"
    const prompt = `<|system|>\n<|end|>\n<|user|>\n${query}<|end|>\n<|assistant|>`

    //  We use a special <|end|> token with ID 49155 to denote ends of a turn
    const outputs = await pipe({
      prompt,
      max_new_tokens: 256,
      do_sample: true,
      temperature: 0.2,
      top_k: 50,
      top_p: 0.95,
      eos_token_id: 49155
    })

    // You can sort a list in Python by using the sort() method. Here's an example:\n\n```\nnumbers = [3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5]\nnumbers.sort()\nprint(numbers)\n```\n\nThis will sort the list in place and print the sorted list.
    const tmp = outputs[0]['generated_text']

    process.stdout.write(tmp)
    res.write(tmp)
    /*
    const inputTokens = await tokenizer.tokenize("def fibbinacci(")
    console.log('inputTokens:', inputTokens)
    const tmp = await llm.generate_tokens$({
      tokens: inputTokens,
      max_length: 64,
      include_prompt_in_result: false,
    })
    process.stdout.write(tmp)
    res.write(tmp)
    console.log("generator initialized, beginning token streaming..")
    for await (const token of generator) {
      if (!pending.queue.includes(id)) {
        break
      }
      const tmp = await tokenizer.detokenize(token)
      process.stdout.write(tmp)
      res.write(tmp)
    }
    */

    endRequest(id, `normal end of the LLM stream for request ${id}`)
  } catch (e) {
    endRequest(id, `premature end of the LLM stream for request ${id} (${e})`)
  } 

  try {
    res.end()
  } catch (err) {
    console.log(`couldn't end the HTTP stream for request ${id} (${err})`)
  }
  
})

app.listen(port, () => { console.log(`Open http://localhost:${port}/?prompt=a%20pong%20game%20clone%20in%20HTML,%20made%20using%20the%20canvas`) })