Spaces:
Paused
Paused
Commit
·
297b43c
1
Parent(s):
4c9914b
feat: refactor app.py and use whisperx
Browse files- app.py +28 -23
- requirements.txt +1 -1
- whisper.py +539 -0
app.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
| 1 |
import tempfile
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
-
|
|
|
|
| 5 |
|
| 6 |
try:
|
| 7 |
import spaces
|
|
@@ -10,6 +11,8 @@ try:
|
|
| 10 |
except ImportError:
|
| 11 |
USING_SPACES = False
|
| 12 |
|
|
|
|
|
|
|
| 13 |
|
| 14 |
def gpu_decorator(func):
|
| 15 |
if USING_SPACES:
|
|
@@ -18,10 +21,11 @@ def gpu_decorator(func):
|
|
| 18 |
return func
|
| 19 |
|
| 20 |
|
| 21 |
-
model =
|
| 22 |
"formospeech/whisper-large-v2-formosan-all-ct2",
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
-
model = BatchedInferencePipeline(model=model)
|
| 25 |
|
| 26 |
with gr.Blocks() as demo:
|
| 27 |
gr.Markdown(
|
|
@@ -52,9 +56,9 @@ with gr.Blocks() as demo:
|
|
| 52 |
)
|
| 53 |
min_silence_duration_ms_slider = gr.Slider(
|
| 54 |
label="min silence duration ms",
|
| 55 |
-
minimum=
|
| 56 |
-
maximum=
|
| 57 |
-
step=
|
| 58 |
value=150,
|
| 59 |
info="Minimum duration of silence (in ms) to consider a segment as speech.",
|
| 60 |
)
|
|
@@ -67,30 +71,31 @@ with gr.Blocks() as demo:
|
|
| 67 |
)
|
| 68 |
|
| 69 |
@gpu_decorator
|
| 70 |
-
def generate_srt(audio, threshold,
|
| 71 |
-
|
|
|
|
|
|
|
| 72 |
audio,
|
| 73 |
language="id",
|
| 74 |
-
beam_size=5,
|
| 75 |
-
vad_filter=True,
|
| 76 |
-
vad_parameters={
|
| 77 |
-
"threshold": threshold,
|
| 78 |
-
"min_silence_duration_ms": min_silence_duration_ms,
|
| 79 |
-
},
|
| 80 |
batch_size=32,
|
| 81 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
srt_content = ""
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
|
|
|
| 91 |
srt_content += f"{start_time_srt} --> {end_time_srt}\n"
|
| 92 |
|
| 93 |
-
srt_content += f"族語:{segment
|
| 94 |
srt_content += "華語:\n\n"
|
| 95 |
|
| 96 |
return srt_content.strip()
|
|
|
|
| 1 |
import tempfile
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
+
|
| 5 |
+
from whisper import load_audio, load_model
|
| 6 |
|
| 7 |
try:
|
| 8 |
import spaces
|
|
|
|
| 11 |
except ImportError:
|
| 12 |
USING_SPACES = False
|
| 13 |
|
| 14 |
+
SAMPLING_RATE = 16000
|
| 15 |
+
|
| 16 |
|
| 17 |
def gpu_decorator(func):
|
| 18 |
if USING_SPACES:
|
|
|
|
| 21 |
return func
|
| 22 |
|
| 23 |
|
| 24 |
+
model = load_model(
|
| 25 |
"formospeech/whisper-large-v2-formosan-all-ct2",
|
| 26 |
+
device="cuda",
|
| 27 |
+
asr_options={"word_timestamps": True},
|
| 28 |
)
|
|
|
|
| 29 |
|
| 30 |
with gr.Blocks() as demo:
|
| 31 |
gr.Markdown(
|
|
|
|
| 56 |
)
|
| 57 |
min_silence_duration_ms_slider = gr.Slider(
|
| 58 |
label="min silence duration ms",
|
| 59 |
+
minimum=10,
|
| 60 |
+
maximum=500,
|
| 61 |
+
step=10,
|
| 62 |
value=150,
|
| 63 |
info="Minimum duration of silence (in ms) to consider a segment as speech.",
|
| 64 |
)
|
|
|
|
| 71 |
)
|
| 72 |
|
| 73 |
@gpu_decorator
|
| 74 |
+
def generate_srt(audio, threshold, min_silence_duration_ms=500):
|
| 75 |
+
audio = load_audio(audio, sr=SAMPLING_RATE)
|
| 76 |
+
|
| 77 |
+
output = model.transcribe(
|
| 78 |
audio,
|
| 79 |
language="id",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
batch_size=32,
|
| 81 |
)
|
| 82 |
+
|
| 83 |
+
segments = output["segments"]
|
| 84 |
+
print(segments)
|
| 85 |
+
|
| 86 |
srt_content = ""
|
| 87 |
+
|
| 88 |
+
for i, segment in enumerate(segments):
|
| 89 |
+
start_seconds = segment["start"]
|
| 90 |
+
end_seconds = segment["end"]
|
| 91 |
+
|
| 92 |
+
srt_content += f"{i + 1}\n"
|
| 93 |
+
|
| 94 |
+
start_time_srt = f"{int(start_seconds // 3600):02}:{int((start_seconds % 3600) // 60):02}:{int(start_seconds % 60):02},{int((start_seconds % 1) * 1000):03}"
|
| 95 |
+
end_time_srt = f"{int(end_seconds // 3600):02}:{int((end_seconds % 3600) // 60):02}:{int(end_seconds % 60):02},{int((end_seconds % 1) * 1000):03}"
|
| 96 |
srt_content += f"{start_time_srt} --> {end_time_srt}\n"
|
| 97 |
|
| 98 |
+
srt_content += f"族語:{segment['text']}\n"
|
| 99 |
srt_content += "華語:\n\n"
|
| 100 |
|
| 101 |
return srt_content.strip()
|
requirements.txt
CHANGED
|
@@ -1 +1 @@
|
|
| 1 |
-
|
|
|
|
| 1 |
+
whisperx
|
whisper.py
ADDED
|
@@ -0,0 +1,539 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from dataclasses import replace
|
| 3 |
+
from math import ceil
|
| 4 |
+
from typing import List, Optional, Union
|
| 5 |
+
|
| 6 |
+
import ctranslate2
|
| 7 |
+
import faster_whisper
|
| 8 |
+
import numpy as np
|
| 9 |
+
import torch
|
| 10 |
+
from faster_whisper.tokenizer import Tokenizer
|
| 11 |
+
from faster_whisper.transcribe import TranscriptionOptions, get_ctranslate2_storage
|
| 12 |
+
from transformers import Pipeline
|
| 13 |
+
from transformers.pipelines.pt_utils import PipelineIterator
|
| 14 |
+
from whisperx.audio import N_SAMPLES, SAMPLE_RATE, load_audio, log_mel_spectrogram
|
| 15 |
+
from whisperx.types import SingleSegment, TranscriptionResult
|
| 16 |
+
from whisperx.vads import Pyannote, Silero, Vad
|
| 17 |
+
from whisperx.vads.pyannote import Binarize
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
def find_numeral_symbol_tokens(tokenizer):
|
| 21 |
+
numeral_symbol_tokens = []
|
| 22 |
+
for i in range(tokenizer.eot):
|
| 23 |
+
token = tokenizer.decode([i]).removeprefix(" ")
|
| 24 |
+
has_numeral_symbol = any(c in "0123456789%$£" for c in token)
|
| 25 |
+
if has_numeral_symbol:
|
| 26 |
+
numeral_symbol_tokens.append(i)
|
| 27 |
+
return numeral_symbol_tokens
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class WhisperModel(faster_whisper.WhisperModel):
|
| 31 |
+
"""
|
| 32 |
+
FasterWhisperModel provides batched inference for faster-whisper.
|
| 33 |
+
Currently only works in non-timestamp mode and fixed prompt for all samples in batch.
|
| 34 |
+
"""
|
| 35 |
+
|
| 36 |
+
def generate_segment_batched(
|
| 37 |
+
self,
|
| 38 |
+
features: np.ndarray,
|
| 39 |
+
tokenizer: Tokenizer,
|
| 40 |
+
options: TranscriptionOptions,
|
| 41 |
+
encoder_output=None,
|
| 42 |
+
):
|
| 43 |
+
batch_size = features.shape[0]
|
| 44 |
+
all_tokens = []
|
| 45 |
+
prompt_reset_since = 0
|
| 46 |
+
if options.initial_prompt is not None:
|
| 47 |
+
initial_prompt = " " + options.initial_prompt.strip()
|
| 48 |
+
initial_prompt_tokens = tokenizer.encode(initial_prompt)
|
| 49 |
+
all_tokens.extend(initial_prompt_tokens)
|
| 50 |
+
previous_tokens = all_tokens[prompt_reset_since:]
|
| 51 |
+
prompt = self.get_prompt(
|
| 52 |
+
tokenizer,
|
| 53 |
+
previous_tokens,
|
| 54 |
+
without_timestamps=options.without_timestamps,
|
| 55 |
+
prefix=options.prefix,
|
| 56 |
+
hotwords=options.hotwords,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
encoder_output = self.encode(features)
|
| 60 |
+
|
| 61 |
+
max_initial_timestamp_index = int(
|
| 62 |
+
round(options.max_initial_timestamp / self.time_precision)
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
result = self.model.generate(
|
| 66 |
+
encoder_output,
|
| 67 |
+
[prompt] * batch_size,
|
| 68 |
+
beam_size=options.beam_size,
|
| 69 |
+
patience=options.patience,
|
| 70 |
+
length_penalty=options.length_penalty,
|
| 71 |
+
max_length=self.max_length,
|
| 72 |
+
suppress_blank=options.suppress_blank,
|
| 73 |
+
suppress_tokens=options.suppress_tokens,
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
tokens_batch = [x.sequences_ids[0] for x in result]
|
| 77 |
+
|
| 78 |
+
def decode_batch(tokens: List[List[int]]) -> str:
|
| 79 |
+
res = []
|
| 80 |
+
for tk in tokens:
|
| 81 |
+
res.append([token for token in tk if token < tokenizer.eot])
|
| 82 |
+
# text_tokens = [token for token in tokens if token < self.eot]
|
| 83 |
+
return tokenizer.tokenizer.decode_batch(res)
|
| 84 |
+
|
| 85 |
+
text = decode_batch(tokens_batch)
|
| 86 |
+
|
| 87 |
+
return encoder_output, text, tokens_batch
|
| 88 |
+
|
| 89 |
+
def encode(self, features: np.ndarray) -> ctranslate2.StorageView:
|
| 90 |
+
# When the model is running on multiple GPUs, the encoder output should be moved
|
| 91 |
+
# to the CPU since we don't know which GPU will handle the next job.
|
| 92 |
+
to_cpu = self.model.device == "cuda" and len(self.model.device_index) > 1
|
| 93 |
+
# unsqueeze if batch size = 1
|
| 94 |
+
if len(features.shape) == 2:
|
| 95 |
+
features = np.expand_dims(features, 0)
|
| 96 |
+
features = get_ctranslate2_storage(features)
|
| 97 |
+
|
| 98 |
+
return self.model.encode(features, to_cpu=to_cpu)
|
| 99 |
+
|
| 100 |
+
|
| 101 |
+
class FasterWhisperPipeline(Pipeline):
|
| 102 |
+
"""
|
| 103 |
+
Huggingface Pipeline wrapper for FasterWhisperModel.
|
| 104 |
+
"""
|
| 105 |
+
|
| 106 |
+
# TODO:
|
| 107 |
+
# - add support for timestamp mode
|
| 108 |
+
# - add support for custom inference kwargs
|
| 109 |
+
|
| 110 |
+
def __init__(
|
| 111 |
+
self,
|
| 112 |
+
model: WhisperModel,
|
| 113 |
+
vad,
|
| 114 |
+
vad_params: dict,
|
| 115 |
+
options: TranscriptionOptions,
|
| 116 |
+
tokenizer: Optional[Tokenizer] = None,
|
| 117 |
+
device: Union[int, str, "torch.device"] = -1,
|
| 118 |
+
framework="pt",
|
| 119 |
+
language: Optional[str] = None,
|
| 120 |
+
suppress_numerals: bool = False,
|
| 121 |
+
**kwargs,
|
| 122 |
+
):
|
| 123 |
+
self.model = model
|
| 124 |
+
self.tokenizer = tokenizer
|
| 125 |
+
self.options = options
|
| 126 |
+
self.preset_language = language
|
| 127 |
+
self.suppress_numerals = suppress_numerals
|
| 128 |
+
self._batch_size = kwargs.pop("batch_size", None)
|
| 129 |
+
self._num_workers = 1
|
| 130 |
+
self._preprocess_params, self._forward_params, self._postprocess_params = (
|
| 131 |
+
self._sanitize_parameters(**kwargs)
|
| 132 |
+
)
|
| 133 |
+
self.call_count = 0
|
| 134 |
+
self.framework = framework
|
| 135 |
+
if self.framework == "pt":
|
| 136 |
+
if isinstance(device, torch.device):
|
| 137 |
+
self.device = device
|
| 138 |
+
elif isinstance(device, str):
|
| 139 |
+
self.device = torch.device(device)
|
| 140 |
+
elif device < 0:
|
| 141 |
+
self.device = torch.device("cpu")
|
| 142 |
+
else:
|
| 143 |
+
self.device = torch.device(f"cuda:{device}")
|
| 144 |
+
else:
|
| 145 |
+
self.device = device
|
| 146 |
+
|
| 147 |
+
super(Pipeline, self).__init__()
|
| 148 |
+
self.vad_model = vad
|
| 149 |
+
self._vad_params = vad_params
|
| 150 |
+
self.last_speech_timestamp = 0.0
|
| 151 |
+
|
| 152 |
+
def _sanitize_parameters(self, **kwargs):
|
| 153 |
+
preprocess_kwargs = {}
|
| 154 |
+
if "tokenizer" in kwargs:
|
| 155 |
+
preprocess_kwargs["maybe_arg"] = kwargs["maybe_arg"]
|
| 156 |
+
return preprocess_kwargs, {}, {}
|
| 157 |
+
|
| 158 |
+
def preprocess(self, input_dict):
|
| 159 |
+
audio = input_dict["inputs"]
|
| 160 |
+
|
| 161 |
+
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
| 162 |
+
features = log_mel_spectrogram(
|
| 163 |
+
audio,
|
| 164 |
+
n_mels=model_n_mels if model_n_mels is not None else 80,
|
| 165 |
+
padding=N_SAMPLES - audio.shape[0],
|
| 166 |
+
)
|
| 167 |
+
return {
|
| 168 |
+
"inputs": features,
|
| 169 |
+
"start": input_dict["start"],
|
| 170 |
+
"end": input_dict["end"],
|
| 171 |
+
"segment_size": input_dict["segment_size"],
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
def _forward(self, model_inputs):
|
| 175 |
+
encoder_output, text, tokens = self.model.generate_segment_batched(
|
| 176 |
+
model_inputs["inputs"], self.tokenizer, self.options
|
| 177 |
+
)
|
| 178 |
+
outputs = [
|
| 179 |
+
[
|
| 180 |
+
{
|
| 181 |
+
"tokens": tokens[i],
|
| 182 |
+
"start": model_inputs["start"][i],
|
| 183 |
+
"end": model_inputs["end"][i],
|
| 184 |
+
"seek": int(model_inputs["start"][i] * 100),
|
| 185 |
+
}
|
| 186 |
+
]
|
| 187 |
+
for i in range(len(tokens))
|
| 188 |
+
]
|
| 189 |
+
|
| 190 |
+
self.last_speech_timestamp = self.model.add_word_timestamps(
|
| 191 |
+
outputs,
|
| 192 |
+
self.tokenizer,
|
| 193 |
+
encoder_output,
|
| 194 |
+
num_frames=model_inputs["segment_size"],
|
| 195 |
+
prepend_punctuations="\"'“¿([{-",
|
| 196 |
+
append_punctuations="\"'.。,,!!??::”)]}、",
|
| 197 |
+
last_speech_timestamp=self.last_speech_timestamp,
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
outputs = [outputs[i][0]["words"] for i in range(len(outputs))]
|
| 201 |
+
outputs = sum(outputs, [])
|
| 202 |
+
return {
|
| 203 |
+
"words": [outputs],
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
def postprocess(self, model_outputs):
|
| 207 |
+
return model_outputs
|
| 208 |
+
|
| 209 |
+
def get_iterator(
|
| 210 |
+
self,
|
| 211 |
+
inputs,
|
| 212 |
+
num_workers: int,
|
| 213 |
+
batch_size: int,
|
| 214 |
+
preprocess_params: dict,
|
| 215 |
+
forward_params: dict,
|
| 216 |
+
postprocess_params: dict,
|
| 217 |
+
):
|
| 218 |
+
dataset = PipelineIterator(inputs, self.preprocess, preprocess_params)
|
| 219 |
+
if "TOKENIZERS_PARALLELISM" not in os.environ:
|
| 220 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
| 221 |
+
# TODO hack by collating feature_extractor and image_processor
|
| 222 |
+
|
| 223 |
+
def stack(items):
|
| 224 |
+
return {
|
| 225 |
+
"inputs": torch.stack([x["inputs"] for x in items]),
|
| 226 |
+
"start": [x["start"] for x in items],
|
| 227 |
+
"end": [x["end"] for x in items],
|
| 228 |
+
"segment_size": [x["segment_size"] for x in items],
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
dataloader = torch.utils.data.DataLoader(
|
| 232 |
+
dataset, num_workers=num_workers, batch_size=batch_size, collate_fn=stack
|
| 233 |
+
)
|
| 234 |
+
model_iterator = PipelineIterator(
|
| 235 |
+
dataloader, self.forward, forward_params, loader_batch_size=batch_size
|
| 236 |
+
)
|
| 237 |
+
final_iterator = PipelineIterator(
|
| 238 |
+
model_iterator, self.postprocess, postprocess_params
|
| 239 |
+
)
|
| 240 |
+
return final_iterator
|
| 241 |
+
|
| 242 |
+
def transcribe(
|
| 243 |
+
self,
|
| 244 |
+
audio: Union[str, np.ndarray],
|
| 245 |
+
batch_size: Optional[int] = None,
|
| 246 |
+
num_workers=0,
|
| 247 |
+
language: Optional[str] = None,
|
| 248 |
+
task: Optional[str] = None,
|
| 249 |
+
chunk_size=30,
|
| 250 |
+
print_progress=False,
|
| 251 |
+
combined_progress=False,
|
| 252 |
+
verbose=False,
|
| 253 |
+
) -> TranscriptionResult:
|
| 254 |
+
if isinstance(audio, str):
|
| 255 |
+
audio = load_audio(audio)
|
| 256 |
+
|
| 257 |
+
def data(audio, segments):
|
| 258 |
+
for seg in segments:
|
| 259 |
+
f1 = int(seg["start"] * SAMPLE_RATE)
|
| 260 |
+
f2 = int(seg["end"] * SAMPLE_RATE)
|
| 261 |
+
# print(f2-f1)
|
| 262 |
+
yield {
|
| 263 |
+
"inputs": audio[f1:f2],
|
| 264 |
+
"start": seg["start"],
|
| 265 |
+
"end": seg["end"],
|
| 266 |
+
"segment_size": int(
|
| 267 |
+
ceil(seg["end"] - seg["start"]) * self.model.frames_per_second
|
| 268 |
+
),
|
| 269 |
+
}
|
| 270 |
+
|
| 271 |
+
# Pre-process audio and merge chunks as defined by the respective VAD child class
|
| 272 |
+
# In case vad_model is manually assigned (see 'load_model') follow the functionality of pyannote toolkit
|
| 273 |
+
if issubclass(type(self.vad_model), Vad):
|
| 274 |
+
waveform = self.vad_model.preprocess_audio(audio)
|
| 275 |
+
merge_chunks = self.vad_model.merge_chunks
|
| 276 |
+
else:
|
| 277 |
+
waveform = Pyannote.preprocess_audio(audio)
|
| 278 |
+
merge_chunks = Pyannote.merge_chunks
|
| 279 |
+
|
| 280 |
+
pre_merge_vad_segments = self.vad_model(
|
| 281 |
+
{"waveform": waveform, "sample_rate": SAMPLE_RATE}
|
| 282 |
+
)
|
| 283 |
+
vad_segments = merge_chunks(
|
| 284 |
+
pre_merge_vad_segments,
|
| 285 |
+
chunk_size,
|
| 286 |
+
onset=self._vad_params["vad_onset"],
|
| 287 |
+
offset=self._vad_params["vad_offset"],
|
| 288 |
+
)
|
| 289 |
+
if self.tokenizer is None:
|
| 290 |
+
language = language or self.detect_language(audio)
|
| 291 |
+
task = task or "transcribe"
|
| 292 |
+
self.tokenizer = Tokenizer(
|
| 293 |
+
self.model.hf_tokenizer,
|
| 294 |
+
self.model.model.is_multilingual,
|
| 295 |
+
task=task,
|
| 296 |
+
language=language,
|
| 297 |
+
)
|
| 298 |
+
else:
|
| 299 |
+
language = language or self.tokenizer.language_code
|
| 300 |
+
task = task or self.tokenizer.task
|
| 301 |
+
if task != self.tokenizer.task or language != self.tokenizer.language_code:
|
| 302 |
+
self.tokenizer = Tokenizer(
|
| 303 |
+
self.model.hf_tokenizer,
|
| 304 |
+
self.model.model.is_multilingual,
|
| 305 |
+
task=task,
|
| 306 |
+
language=language,
|
| 307 |
+
)
|
| 308 |
+
|
| 309 |
+
if self.suppress_numerals:
|
| 310 |
+
previous_suppress_tokens = self.options.suppress_tokens
|
| 311 |
+
numeral_symbol_tokens = find_numeral_symbol_tokens(self.tokenizer)
|
| 312 |
+
print("Suppressing numeral and symbol tokens")
|
| 313 |
+
new_suppressed_tokens = numeral_symbol_tokens + self.options.suppress_tokens
|
| 314 |
+
new_suppressed_tokens = list(set(new_suppressed_tokens))
|
| 315 |
+
self.options = replace(self.options, suppress_tokens=new_suppressed_tokens)
|
| 316 |
+
|
| 317 |
+
binarize = Binarize(
|
| 318 |
+
max_duration=chunk_size,
|
| 319 |
+
onset=self._vad_params["vad_onset"],
|
| 320 |
+
offset=self._vad_params["vad_offset"],
|
| 321 |
+
)
|
| 322 |
+
segments = binarize(pre_merge_vad_segments).get_timeline()
|
| 323 |
+
segments: List[SingleSegment] = [
|
| 324 |
+
{
|
| 325 |
+
"start": seg.start,
|
| 326 |
+
"end": seg.end,
|
| 327 |
+
"text": "",
|
| 328 |
+
}
|
| 329 |
+
for seg in segments
|
| 330 |
+
]
|
| 331 |
+
|
| 332 |
+
batch_size = batch_size or self._batch_size
|
| 333 |
+
total_segments = len(vad_segments)
|
| 334 |
+
for idx, out in enumerate(
|
| 335 |
+
self.__call__(
|
| 336 |
+
data(audio, vad_segments),
|
| 337 |
+
batch_size=batch_size,
|
| 338 |
+
num_workers=num_workers,
|
| 339 |
+
)
|
| 340 |
+
):
|
| 341 |
+
if print_progress:
|
| 342 |
+
base_progress = ((idx + 1) / total_segments) * 100
|
| 343 |
+
percent_complete = (
|
| 344 |
+
base_progress / 2 if combined_progress else base_progress
|
| 345 |
+
)
|
| 346 |
+
print(f"Progress: {percent_complete:.2f}%...")
|
| 347 |
+
|
| 348 |
+
last_speech_timestamp_index = 0
|
| 349 |
+
next_last_speech_timestamp_index = 0
|
| 350 |
+
for word in out["words"]:
|
| 351 |
+
possiable_segment_indices = []
|
| 352 |
+
|
| 353 |
+
for i, segment in enumerate(segments[last_speech_timestamp_index:]):
|
| 354 |
+
if segment["end"] < word["start"]:
|
| 355 |
+
next_last_speech_timestamp_index = i + 1
|
| 356 |
+
overlap_start = max(segment["start"], word["start"])
|
| 357 |
+
overlap_end = min(segment["end"], word["end"])
|
| 358 |
+
if overlap_start <= overlap_end:
|
| 359 |
+
possiable_segment_indices.append(
|
| 360 |
+
last_speech_timestamp_index + i
|
| 361 |
+
)
|
| 362 |
+
last_speech_timestamp_index = next_last_speech_timestamp_index
|
| 363 |
+
|
| 364 |
+
if len(possiable_segment_indices) == 0:
|
| 365 |
+
print(
|
| 366 |
+
f"Warning: Word '{word['word']}' at [{round(word['start'], 3)} --> {round(word['end'], 3)}] is not in any segment."
|
| 367 |
+
)
|
| 368 |
+
else:
|
| 369 |
+
largest_overlap = -1
|
| 370 |
+
best_segment_index = None
|
| 371 |
+
for i in possiable_segment_indices:
|
| 372 |
+
segment = segments[i]
|
| 373 |
+
overlap_start = max(segment["start"], word["start"])
|
| 374 |
+
overlap_end = min(segment["end"], word["end"])
|
| 375 |
+
overlap_duration = overlap_end - overlap_start
|
| 376 |
+
if overlap_duration > largest_overlap:
|
| 377 |
+
largest_overlap = overlap_duration
|
| 378 |
+
best_segment_index = i
|
| 379 |
+
segments[best_segment_index]["text"] += word["word"]
|
| 380 |
+
# revert the tokenizer if multilingual inference is enabled
|
| 381 |
+
if self.preset_language is None:
|
| 382 |
+
self.tokenizer = None
|
| 383 |
+
|
| 384 |
+
# revert suppressed tokens if suppress_numerals is enabled
|
| 385 |
+
if self.suppress_numerals:
|
| 386 |
+
self.options = replace(
|
| 387 |
+
self.options, suppress_tokens=previous_suppress_tokens
|
| 388 |
+
)
|
| 389 |
+
|
| 390 |
+
return {"segments": segments, "language": language}
|
| 391 |
+
|
| 392 |
+
def detect_language(self, audio: np.ndarray) -> str:
|
| 393 |
+
if audio.shape[0] < N_SAMPLES:
|
| 394 |
+
print(
|
| 395 |
+
"Warning: audio is shorter than 30s, language detection may be inaccurate."
|
| 396 |
+
)
|
| 397 |
+
model_n_mels = self.model.feat_kwargs.get("feature_size")
|
| 398 |
+
segment = log_mel_spectrogram(
|
| 399 |
+
audio[:N_SAMPLES],
|
| 400 |
+
n_mels=model_n_mels if model_n_mels is not None else 80,
|
| 401 |
+
padding=0 if audio.shape[0] >= N_SAMPLES else N_SAMPLES - audio.shape[0],
|
| 402 |
+
)
|
| 403 |
+
encoder_output = self.model.encode(segment)
|
| 404 |
+
results = self.model.model.detect_language(encoder_output)
|
| 405 |
+
language_token, language_probability = results[0][0]
|
| 406 |
+
language = language_token[2:-2]
|
| 407 |
+
print(
|
| 408 |
+
f"Detected language: {language} ({language_probability:.2f}) in first 30s of audio..."
|
| 409 |
+
)
|
| 410 |
+
return language
|
| 411 |
+
|
| 412 |
+
|
| 413 |
+
def load_model(
|
| 414 |
+
whisper_arch: str,
|
| 415 |
+
device: str,
|
| 416 |
+
device_index=0,
|
| 417 |
+
compute_type="float16",
|
| 418 |
+
asr_options: Optional[dict] = None,
|
| 419 |
+
language: Optional[str] = None,
|
| 420 |
+
vad_model: Optional[Vad] = None,
|
| 421 |
+
vad_method: Optional[str] = "pyannote",
|
| 422 |
+
vad_options: Optional[dict] = None,
|
| 423 |
+
model: Optional[WhisperModel] = None,
|
| 424 |
+
task="transcribe",
|
| 425 |
+
download_root: Optional[str] = None,
|
| 426 |
+
local_files_only=False,
|
| 427 |
+
threads=4,
|
| 428 |
+
) -> FasterWhisperPipeline:
|
| 429 |
+
"""Load a Whisper model for inference.
|
| 430 |
+
Args:
|
| 431 |
+
whisper_arch - The name of the Whisper model to load.
|
| 432 |
+
device - The device to load the model on.
|
| 433 |
+
compute_type - The compute type to use for the model.
|
| 434 |
+
vad_method - The vad method to use. vad_model has higher priority if is not None.
|
| 435 |
+
options - A dictionary of options to use for the model.
|
| 436 |
+
language - The language of the model. (use English for now)
|
| 437 |
+
model - The WhisperModel instance to use.
|
| 438 |
+
download_root - The root directory to download the model to.
|
| 439 |
+
local_files_only - If `True`, avoid downloading the file and return the path to the local cached file if it exists.
|
| 440 |
+
threads - The number of cpu threads to use per worker, e.g. will be multiplied by num workers.
|
| 441 |
+
Returns:
|
| 442 |
+
A Whisper pipeline.
|
| 443 |
+
"""
|
| 444 |
+
|
| 445 |
+
if whisper_arch.endswith(".en"):
|
| 446 |
+
language = "en"
|
| 447 |
+
|
| 448 |
+
model = model or WhisperModel(
|
| 449 |
+
whisper_arch,
|
| 450 |
+
device=device,
|
| 451 |
+
device_index=device_index,
|
| 452 |
+
compute_type=compute_type,
|
| 453 |
+
download_root=download_root,
|
| 454 |
+
local_files_only=local_files_only,
|
| 455 |
+
cpu_threads=threads,
|
| 456 |
+
)
|
| 457 |
+
if language is not None:
|
| 458 |
+
tokenizer = Tokenizer(
|
| 459 |
+
model.hf_tokenizer,
|
| 460 |
+
model.model.is_multilingual,
|
| 461 |
+
task=task,
|
| 462 |
+
language=language,
|
| 463 |
+
)
|
| 464 |
+
else:
|
| 465 |
+
print(
|
| 466 |
+
"No language specified, language will be first be detected for each audio file (increases inference time)."
|
| 467 |
+
)
|
| 468 |
+
tokenizer = None
|
| 469 |
+
|
| 470 |
+
default_asr_options = {
|
| 471 |
+
"beam_size": 5,
|
| 472 |
+
"best_of": 5,
|
| 473 |
+
"patience": 1,
|
| 474 |
+
"length_penalty": 1,
|
| 475 |
+
"repetition_penalty": 1,
|
| 476 |
+
"no_repeat_ngram_size": 0,
|
| 477 |
+
"temperatures": [0.0, 0.2, 0.4, 0.6, 0.8, 1.0],
|
| 478 |
+
"compression_ratio_threshold": 2.4,
|
| 479 |
+
"log_prob_threshold": -1.0,
|
| 480 |
+
"no_speech_threshold": 0.6,
|
| 481 |
+
"condition_on_previous_text": False,
|
| 482 |
+
"prompt_reset_on_temperature": 0.5,
|
| 483 |
+
"initial_prompt": None,
|
| 484 |
+
"prefix": None,
|
| 485 |
+
"suppress_blank": True,
|
| 486 |
+
"suppress_tokens": [-1],
|
| 487 |
+
"without_timestamps": True,
|
| 488 |
+
"max_initial_timestamp": 0.0,
|
| 489 |
+
"word_timestamps": False,
|
| 490 |
+
"prepend_punctuations": "\"'“¿([{-",
|
| 491 |
+
"append_punctuations": "\"'.。,,!!??::”)]}、",
|
| 492 |
+
"multilingual": model.model.is_multilingual,
|
| 493 |
+
"suppress_numerals": False,
|
| 494 |
+
"max_new_tokens": None,
|
| 495 |
+
"clip_timestamps": None,
|
| 496 |
+
"hallucination_silence_threshold": None,
|
| 497 |
+
"hotwords": None,
|
| 498 |
+
}
|
| 499 |
+
|
| 500 |
+
if asr_options is not None:
|
| 501 |
+
default_asr_options.update(asr_options)
|
| 502 |
+
|
| 503 |
+
suppress_numerals = default_asr_options["suppress_numerals"]
|
| 504 |
+
del default_asr_options["suppress_numerals"]
|
| 505 |
+
|
| 506 |
+
default_asr_options = TranscriptionOptions(**default_asr_options)
|
| 507 |
+
|
| 508 |
+
default_vad_options = {
|
| 509 |
+
"chunk_size": 30, # needed by silero since binarization happens before merge_chunks
|
| 510 |
+
"vad_onset": 0.500,
|
| 511 |
+
"vad_offset": 0.363,
|
| 512 |
+
}
|
| 513 |
+
|
| 514 |
+
if vad_options is not None:
|
| 515 |
+
default_vad_options.update(vad_options)
|
| 516 |
+
|
| 517 |
+
# Note: manually assigned vad_model has higher priority than vad_method!
|
| 518 |
+
if vad_model is not None:
|
| 519 |
+
print("Use manually assigned vad_model. vad_method is ignored.")
|
| 520 |
+
vad_model = vad_model
|
| 521 |
+
else:
|
| 522 |
+
if vad_method == "silero":
|
| 523 |
+
vad_model = Silero(**default_vad_options)
|
| 524 |
+
elif vad_method == "pyannote":
|
| 525 |
+
vad_model = Pyannote(
|
| 526 |
+
torch.device(device), use_auth_token=None, **default_vad_options
|
| 527 |
+
)
|
| 528 |
+
else:
|
| 529 |
+
raise ValueError(f"Invalid vad_method: {vad_method}")
|
| 530 |
+
|
| 531 |
+
return FasterWhisperPipeline(
|
| 532 |
+
model=model,
|
| 533 |
+
vad=vad_model,
|
| 534 |
+
options=default_asr_options,
|
| 535 |
+
tokenizer=tokenizer,
|
| 536 |
+
language=language,
|
| 537 |
+
suppress_numerals=suppress_numerals,
|
| 538 |
+
vad_params=default_vad_options,
|
| 539 |
+
)
|