Spaces:
Running
Running
| #!/usr/bin/env python | |
| import pathlib | |
| import pickle | |
| import sys | |
| import gradio as gr | |
| import numpy as np | |
| import torch | |
| from huggingface_hub import hf_hub_download | |
| from torch import nn | |
| sys.path.insert(0, "StyleGAN-Human") | |
| TITLE = "StyleGAN-Human" | |
| DESCRIPTION = "https://github.com/stylegan-human/StyleGAN-Human" | |
| def load_model(file_name: str, device: torch.device) -> nn.Module: | |
| path = hf_hub_download("public-data/StyleGAN-Human", f"models/{file_name}") | |
| with pathlib.Path(path).open("rb") as f: | |
| model = pickle.load(f)["G_ema"] # noqa: S301 | |
| model.eval() | |
| model.to(device) | |
| with torch.inference_mode(): | |
| z = torch.zeros((1, model.z_dim)).to(device) | |
| label = torch.zeros([1, model.c_dim], device=device) | |
| model(z, label, force_fp32=True) | |
| return model | |
| device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
| model = load_model("stylegan_human_v2_1024.pkl", device) | |
| def generate_z(z_dim: int, seed: int) -> torch.Tensor: | |
| return torch.from_numpy(np.random.RandomState(seed).randn(1, z_dim)).float() | |
| def generate_image(seed: int, truncation_psi: float) -> np.ndarray: | |
| seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max)) | |
| z = generate_z(model.z_dim, seed) | |
| z = z.to(device) | |
| label = torch.zeros([1, model.c_dim], device=device) | |
| out = model(z, label, truncation_psi=truncation_psi, force_fp32=True) | |
| out = (out.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8) | |
| return out[0].cpu().numpy() | |
| demo = gr.Interface( | |
| fn=generate_image, | |
| inputs=[ | |
| gr.Slider(label="Seed", minimum=0, maximum=100000, step=1, value=0), | |
| gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7), | |
| ], | |
| outputs=gr.Image(label="Output"), | |
| title=TITLE, | |
| description=DESCRIPTION, | |
| ) | |
| if __name__ == "__main__": | |
| demo.queue(max_size=10).launch() | |