Spaces:
Runtime error
Runtime error
| import json | |
| import os | |
| import pathlib | |
| import pickle | |
| from typing import Dict, List, Tuple | |
| from langchain import PromptTemplate | |
| from langchain.chains import LLMChain | |
| from langchain.chains.base import Chain | |
| from langchain.chains.combine_documents.base import BaseCombineDocumentsChain | |
| from langchain.chains.conversation.memory import ConversationBufferMemory | |
| from langchain.chains.question_answering import load_qa_chain | |
| from langchain.prompts import FewShotPromptTemplate, PromptTemplate | |
| from langchain.prompts.example_selector import \ | |
| SemanticSimilarityExampleSelector | |
| from langchain.vectorstores import FAISS, Weaviate | |
| from pydantic import BaseModel | |
| class CustomChain(Chain, BaseModel): | |
| vstore: FAISS | |
| chain: BaseCombineDocumentsChain | |
| key_word_extractor: Chain | |
| def input_keys(self) -> List[str]: | |
| return ["question"] | |
| def output_keys(self) -> List[str]: | |
| return ["answer"] | |
| def _call(self, inputs: Dict[str, str]) -> Dict[str, str]: | |
| question = inputs["question"] | |
| chat_history_str = _get_chat_history(inputs["chat_history"]) | |
| if chat_history_str: | |
| new_question = self.key_word_extractor.run( | |
| question=question, chat_history=chat_history_str | |
| ) | |
| else: | |
| new_question = question | |
| print(new_question) | |
| docs = self.vstore.similarity_search(new_question, k=3) | |
| new_inputs = inputs.copy() | |
| new_inputs["question"] = new_question | |
| new_inputs["chat_history"] = chat_history_str | |
| answer, _ = self.chain.combine_docs(docs, **new_inputs) | |
| ## Dedupe source list | |
| source_list = [doc.metadata['source'] for doc in docs] | |
| source_string = "\n\n*Sources:* " | |
| for i, source in enumerate(set(source_list)): | |
| source_string += f"<a href=\"https://{source}\" target=\"_blank\">[{i}]</a>" | |
| final_answer = answer + source_string | |
| return {"answer": final_answer} | |
| def get_new_chain1(vectorstore, rephraser_llm, final_output_llm, isFlan) -> Chain: | |
| _eg_template = """## Example: | |
| Chat History: | |
| {chat_history} | |
| Follow Up Input: {question} | |
| Standalone question: {answer}""" | |
| _eg_prompt = PromptTemplate( | |
| template=_eg_template, | |
| input_variables=["chat_history", "question", "answer"], | |
| ) | |
| _prefix = """Given the following conversation and a follow up question, rephrase the follow up question to be a standalone question. You should assume that the question is related to Hugging Face Code.""" | |
| _suffix = """## Example: | |
| Chat History: | |
| {chat_history} | |
| Follow Up Input: {question} | |
| Standalone question:""" | |
| #### LOAD VSTORE WITH REPHRASE EXAMPLES | |
| with open("rephrase_eg.pkl", 'rb') as f: | |
| rephrase_example_selector = pickle.load(f) | |
| prompt = FewShotPromptTemplate( | |
| prefix=_prefix, | |
| suffix=_suffix, | |
| example_selector=rephrase_example_selector, | |
| example_prompt=_eg_prompt, | |
| input_variables=["question", "chat_history"], | |
| ) | |
| key_word_extractor = LLMChain(llm=rephraser_llm, prompt=prompt) | |
| EXAMPLE_PROMPT = PromptTemplate( | |
| template=">Example:\nContent:\n---------\n{page_content}\n----------\nSource: {source}", | |
| input_variables=["page_content", "source"], | |
| ) | |
| flan_template = """ | |
| {context} | |
| Based on the above documentation, answer the user's question in markdown: {question}""" | |
| PROMPT = PromptTemplate(template=flan_template, input_variables=["question", "context"]) | |
| doc_chain = load_qa_chain( | |
| final_output_llm, | |
| chain_type="stuff", | |
| prompt=PROMPT, | |
| document_prompt=EXAMPLE_PROMPT, | |
| verbose=True | |
| ) | |
| return CustomChain(chain=doc_chain, vstore=vectorstore, key_word_extractor=key_word_extractor) | |
| def _get_chat_history(chat_history: List[Tuple[str, str]]): | |
| buffer = "" | |
| for human_s, ai_s in chat_history[-1:]: | |
| human = f"Human: " + human_s | |
| ai = f"Assistant: " + ai_s | |
| buffer += "\n" + "\n".join([human, ai]) | |
| return buffer | |