Spaces:
Sleeping
Sleeping
| import streamlit as st | |
| from typing import List | |
| from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
| tokenizer = AutoTokenizer.from_pretrained("juierror/text-to-sql-with-table-schema") | |
| model = AutoModelForSeq2SeqLM.from_pretrained("juierror/text-to-sql-with-table-schema") | |
| t = st.text_input('enter tables') | |
| q = st.text_input('enter question') | |
| def prepare_input(question: str, table: str): | |
| table_prefix = "table:" | |
| question_prefix = "question:" | |
| inputs = f"{question_prefix} {question} {table_prefix} {table}" | |
| input_ids = tokenizer(inputs, max_length=700, return_tensors="pt").input_ids | |
| return input_ids | |
| def inference(question: str, table: str) -> str: | |
| input_data = prepare_input(question=question, table=table) | |
| input_data = input_data.to(model.device) | |
| outputs = model.generate(inputs=input_data, num_beams=10, top_k=10, max_length=700) | |
| result = tokenizer.decode(token_ids=outputs[0], skip_special_tokens=True) | |
| return result | |
| st.write(inference(q,t)) |