from transformers import AutoModelForCausalLM, AutoTokenizer import torch class ChatQABot: def __init__(self, model_name='Qwen/Qwen1.5-1.8B-Chat'): self.tokenizer = AutoTokenizer.from_pretrained( model_name, trust_remote_code=True ) self.model = AutoModelForCausalLM.from_pretrained( model_name, trust_remote_code=True, torch_dtype=torch.float16, device_map="auto" if torch.cuda.is_available() else "cpu" ) def generate_answer(self, query: str, context: str) -> str: """基于检索到的上下文生成答案""" prompt = f"""基于以下聊天记录回答问题: 聊天记录: {context} 问题:{query} 请根据聊天记录准确回答,如果聊天记录中没有相关信息,请说"根据现有聊天记录无法回答这个问题"。回答要简洁准确。""" messages = [ {"role": "system", "content": "你是一个专业的聊天记录分析助手。"}, {"role": "user", "content": prompt} ] text = self.tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) inputs = self.tokenizer(text, return_tensors="pt").to(self.model.device) with torch.no_grad(): outputs = self.model.generate( **inputs, max_new_tokens=200, temperature=0.7, do_sample=True, pad_token_id=self.tokenizer.eos_token_id ) response = self.tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True) return response