## Restormer: Efficient Transformer for High-Resolution Image Restoration ## Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang ## https://arxiv.org/abs/2111.09881 import torch import torch.nn as nn import torch.nn.functional as F from pdb import set_trace as stx import numbers from einops import rearrange ########################################################################## ## Layer Norm def to_3d(x): return rearrange(x, 'b c h w -> b (h w) c') def to_4d(x,h,w): return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w) class BiasFree_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(BiasFree_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): sigma = x.var(-1, keepdim=True, unbiased=False) return x / torch.sqrt(sigma+1e-5) * self.weight class WithBias_LayerNorm(nn.Module): def __init__(self, normalized_shape): super(WithBias_LayerNorm, self).__init__() if isinstance(normalized_shape, numbers.Integral): normalized_shape = (normalized_shape,) normalized_shape = torch.Size(normalized_shape) assert len(normalized_shape) == 1 self.weight = nn.Parameter(torch.ones(normalized_shape)) self.bias = nn.Parameter(torch.zeros(normalized_shape)) self.normalized_shape = normalized_shape def forward(self, x): mu = x.mean(-1, keepdim=True) sigma = x.var(-1, keepdim=True, unbiased=False) return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias class LayerNorm(nn.Module): def __init__(self, nf, LayerNorm_type): super(LayerNorm, self).__init__() if LayerNorm_type =='BiasFree': self.body = BiasFree_LayerNorm(nf) else: self.body = WithBias_LayerNorm(nf) def forward(self, x): h, w = x.shape[-2:] return to_4d(self.body(to_3d(x)), h, w) ########################################################################## ## Gated-Dconv Feed-Forward Network (GDFN) class FeedForward(nn.Module): def __init__(self, nf, ffn_expansion_factor, bias): super(FeedForward, self).__init__() hidden_features = int(nf*ffn_expansion_factor) self.project_in = nn.Conv2d(nf, hidden_features*2, kernel_size=1, bias=bias) self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias) self.project_out = nn.Conv2d(hidden_features, nf, kernel_size=1, bias=bias) def forward(self, x): x = self.project_in(x) x1, x2 = self.dwconv(x).chunk(2, dim=1) x = F.gelu(x1) * x2 x = self.project_out(x) return x ########################################################################## ## Multi-DConv Head Transposed Self-Attention (MDTA) class Attention(nn.Module): def __init__(self, nf, num_heads, bias): super(Attention, self).__init__() self.num_heads = num_heads self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1)) self.qkv = nn.Conv2d(nf, nf*3, kernel_size=1, bias=bias) self.qkv_dwconv = nn.Conv2d(nf*3, nf*3, kernel_size=3, stride=1, padding=1, groups=nf*3, bias=bias) self.project_out = nn.Conv2d(nf, nf, kernel_size=1, bias=bias) self.emb_layers = nn.Sequential( nn.Conv2d(1, nf, 1, 1, 0, bias=True), nn.SiLU(inplace=True), nn.Conv2d(nf, nf, 1, 1, 0, bias=True), nn.SiLU(inplace=True), nn.Conv2d(nf, nf*3*2, 1, 1, 0, bias=True) ) def forward(self, x, t): """ x: [B, C, H, W] t: [B, 1, 1, 1] 或 [B, 1, H, W] 的时间信号 """ b,c,h,w = x.shape qkv = self.qkv_dwconv(self.qkv(x)) if len(t.shape) > 0 and t.shape[-1] != 1: t = F.interpolate(t, size=x.shape[2:], mode='bilinear', align_corners=False) scale, shift = self.emb_layers(t).chunk(2, dim=1) qkv = qkv * (1+scale) + shift q,k,v = qkv.chunk(3, dim=1) q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads) k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads) v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads) q = torch.nn.functional.normalize(q, dim=-1) k = torch.nn.functional.normalize(k, dim=-1) attn = (q @ k.transpose(-2, -1)) * self.temperature attn = attn.softmax(dim=-1) out = (attn @ v) out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w) out = self.project_out(out) return out ########################################################################## class TransformerBlock(nn.Module): def __init__(self, nf, num_heads, ffn_expansion_factor, bias, LayerNorm_type): super(TransformerBlock, self).__init__() self.norm1 = LayerNorm(nf, LayerNorm_type) self.attn = Attention(nf, num_heads, bias) self.norm2 = LayerNorm(nf, LayerNorm_type) self.ffn = FeedForward(nf, ffn_expansion_factor, bias) def forward(self, x, t): x = x + self.attn(self.norm1(x), t) x = x + self.ffn(self.norm2(x)) return x ########################################################################## ## Overlapped image patch embedding with 3x3 Conv class OverlapPatchEmbed(nn.Module): def __init__(self, in_c=3, embed_dim=48, bias=False): super(OverlapPatchEmbed, self).__init__() self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias) def forward(self, x): x = self.proj(x) return x ########################################################################## ## Resizing modules class Downsample(nn.Module): def __init__(self, n_feat): super(Downsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelUnshuffle(2)) def forward(self, x): return self.body(x) class Upsample(nn.Module): def __init__(self, n_feat): super(Upsample, self).__init__() self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False), nn.PixelShuffle(2)) def forward(self, x): return self.body(x) ########################################################################## ##---------- Restormer ----------------------- class Restormer(nn.Module): def __init__(self, args={}): super().__init__() self.args = args # 设置默认参数 self.in_nc = in_nc = self.args.get('in_nc', 3) self.out_nc = out_nc = self.args.get('out_nc', 3) self.nf = nf = self.args.get('nf', 48) self.nb = nb = self.args.get('nb', [4, 6, 6, 8]) self.num_refinement_blocks = num_refinement_blocks = self.args.get('num_refinement_blocks', 4) self.heads = heads = self.args.get('heads', [1, 2, 4, 8]) self.ffn_expansion_factor = ffn_expansion_factor = self.args.get('ffn_expansion_factor', 2.66) self.bias = bias = self.args.get('bias', False) self.LayerNorm_type = LayerNorm_type = self.args.get('LayerNorm_type', 'WithBias') self.nframes = nframes = self.args.get('nframes', 1) self.res = self.args.get('res', True) self.rectified = self.args.get('rectified', False) self.vpred = self.args.get('vpred', False) self.patch_embed = OverlapPatchEmbed(in_nc*nframes, nf) # Encoder blocks self.encoder_level1 = nn.Sequential(*[ TransformerBlock( nf=nf, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[0]) ]) # Downsample Level 1 → Level 2 self.down1_2 = Downsample(nf) self.encoder_level2 = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[1]) ]) # Downsample Level 2 → Level 3 self.down2_3 = Downsample(int(nf * 2**1)) self.encoder_level3 = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[2]) ]) # Downsample Level 3 → Level 4 self.down3_4 = Downsample(int(nf * 2**2)) self.latent = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[3]) ]) # Decoder blocks # Upsample Level 4 → Level 3 self.up4_3 = Upsample(int(nf * 2**3)) self.reduce_chan_level3 = nn.Conv2d( int(nf * 2**3), int(nf * 2**2), kernel_size=1, bias=bias ) self.decoder_level3 = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[2]) ]) # Upsample Level 3 → Level 2 self.up3_2 = Upsample(int(nf * 2**2)) self.reduce_chan_level2 = nn.Conv2d( int(nf * 2**2), int(nf * 2**1), kernel_size=1, bias=bias ) self.decoder_level2 = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[1]) ]) # Upsample Level 2 → Level 1 self.up2_1 = Upsample(int(nf * 2**1)) self.decoder_level1 = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(nb[0]) ]) # Refinement and output self.refinement = nn.Sequential(*[ TransformerBlock( nf=int(nf * 2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type ) for i in range(num_refinement_blocks) ]) self.output = nn.Conv2d( int(nf * 2**1), out_nc, kernel_size=3, stride=1, padding=1, bias=bias ) def layer_by_layer(self, modules, x, t): # 手动处理需要t的模块 for layer in modules: if isinstance(layer, TransformerBlock): x = layer(x, t) # 传递t else: x = layer(x) return x def forward(self, inp_img, t): if self.rectified: t = t / (1 + t)# sigma->t inp_img = inp_img * (1-t) # Encoder inp_enc_level1 = self.patch_embed(inp_img) out_enc_level1 = self.layer_by_layer(self.encoder_level1, inp_enc_level1, t) inp_enc_level2 = self.down1_2(out_enc_level1) out_enc_level2 = self.layer_by_layer(self.encoder_level2, inp_enc_level2, t) inp_enc_level3 = self.down2_3(out_enc_level2) out_enc_level3 = self.layer_by_layer(self.encoder_level3, inp_enc_level3, t) inp_enc_level4 = self.down3_4(out_enc_level3) latent = self.layer_by_layer(self.latent, inp_enc_level4, t) # Decoder inp_dec_level3 = self.up4_3(latent) inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1) inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3) out_dec_level3 = self.layer_by_layer(self.decoder_level3, inp_dec_level3, t) inp_dec_level2 = self.up3_2(out_dec_level3) inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1) inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2) out_dec_level2 = self.layer_by_layer(self.decoder_level2, inp_dec_level2, t) inp_dec_level1 = self.up2_1(out_dec_level2) inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1) out_dec_level1 = self.layer_by_layer(self.decoder_level1, inp_dec_level1, t) # Refinement out_dec_level1 = self.layer_by_layer(self.refinement, out_dec_level1, t) out = self.output(out_dec_level1) if not self.vpred: if self.res: out += inp_img if self.rectified: out /= (1-t) return out