File size: 13,337 Bytes
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
# -*- coding: utf-8 -*-
import math
import torch
import torch.nn as nn
import numpy as np
# from thop import profile
from einops import rearrange 
from einops.layers.torch import Rearrange, Reduce
from timm.models.layers import trunc_normal_, DropPath
import torch.nn.functional as F

class WMSA(nn.Module):
    """ Self-attention module in Swin Transformer
    """

    def __init__(self, input_dim, output_dim, head_dim, window_size, type):
        super(WMSA, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        self.head_dim = head_dim 
        self.scale = self.head_dim ** -0.5
        self.n_heads = input_dim//head_dim
        self.window_size = window_size
        self.type=type
        self.embedding_layer = nn.Linear(self.input_dim, 3*self.input_dim, bias=True)

        # TODO recover
        # self.relative_position_params = nn.Parameter(torch.zeros(self.n_heads, 2 * window_size - 1, 2 * window_size -1))
        self.relative_position_params = nn.Parameter(torch.zeros((2 * window_size - 1)*(2 * window_size -1), self.n_heads))

        self.linear = nn.Linear(self.input_dim, self.output_dim)

        trunc_normal_(self.relative_position_params, std=.02)
        self.relative_position_params = torch.nn.Parameter(self.relative_position_params.view(2*window_size-1, 2*window_size-1, self.n_heads).transpose(1,2).transpose(0,1))

    def generate_mask(self, h, w, p, shift):
        """ generating the mask of SW-MSA
        Args:
            shift: shift parameters in CyclicShift.
        Returns:
            attn_mask: should be (1 1 w p p),
        """
        # supporting sqaure.
        attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device)
        if self.type == 'W':
            return attn_mask

        s = p - shift
        attn_mask[-1, :, :s, :, s:, :] = True
        attn_mask[-1, :, s:, :, :s, :] = True
        attn_mask[:, -1, :, :s, :, s:] = True
        attn_mask[:, -1, :, s:, :, :s] = True
        attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)')
        return attn_mask

    def forward(self, x):
        """ Forward pass of Window Multi-head Self-attention module.
        Args:
            x: input tensor with shape of [b h w c];
            attn_mask: attention mask, fill -inf where the value is True; 
        Returns:
            output: tensor shape [b h w c]
        """
        if self.type!='W': x = torch.roll(x, shifts=(-(self.window_size//2), -(self.window_size//2)), dims=(1,2))
        x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size)
        h_windows = x.size(1)
        w_windows = x.size(2)
        # sqaure validation
        # assert h_windows == w_windows

        x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size)
        qkv = self.embedding_layer(x)
        q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0)
        sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale
        # Adding learnable relative embedding
        sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q')
        # Using Attn Mask to distinguish different subwindows.
        if self.type != 'W':
            attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size//2)
            sim = sim.masked_fill_(attn_mask, float("-inf"))

        probs = nn.functional.softmax(sim, dim=-1)
        output = torch.einsum('hbwij,hbwjc->hbwic', probs, v)
        output = rearrange(output, 'h b w p c -> b w p (h c)')
        output = self.linear(output)
        output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size)

        if self.type!='W': output = torch.roll(output, shifts=(self.window_size//2, self.window_size//2), dims=(1,2))
        return output

    def relative_embedding(self):
        cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)]))
        relation = cord[:, None, :] - cord[None, :, :] + self.window_size -1
        # negative is allowed
        return self.relative_position_params[:, relation[:,:,0].long(), relation[:,:,1].long()]


class Block(nn.Module):
    def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
        """ SwinTransformer Block
        """
        super(Block, self).__init__()
        self.input_dim = input_dim
        self.output_dim = output_dim
        assert type in ['W', 'SW']
        self.type = type
        if input_resolution <= window_size:
            self.type = 'W'

        # print("Block Initial Type: {}, drop_path_rate:{:.6f}".format(self.type, drop_path))
        self.ln1 = nn.LayerNorm(input_dim)
        self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type)
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.ln2 = nn.LayerNorm(input_dim)
        self.mlp = nn.Sequential(
            nn.Linear(input_dim, 4 * input_dim),
            nn.GELU(),
            nn.Linear(4 * input_dim, output_dim),
        )

    def forward(self, x):
        x = x + self.drop_path(self.msa(self.ln1(x)))
        x = x + self.drop_path(self.mlp(self.ln2(x)))
        return x


class ConvTransBlock(nn.Module):
    def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None):
        """ SwinTransformer and Conv Block
        """
        super(ConvTransBlock, self).__init__()
        self.conv_dim = conv_dim
        self.trans_dim = trans_dim
        self.head_dim = head_dim
        self.window_size = window_size
        self.drop_path = drop_path
        self.type = type
        self.input_resolution = input_resolution

        assert self.type in ['W', 'SW']
        if self.input_resolution <= self.window_size:
            self.type = 'W'

        self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, self.type, self.input_resolution)
        self.conv1_1 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)
        self.conv1_2 = nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True)

        self.conv_block = nn.Sequential(
                nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False),
                nn.ReLU(True),
                nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False)
                )
        
        self.gamma = nn.Sequential(
            nn.Conv2d(1, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True),
            nn.SiLU(inplace=True),
            nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True),
        )
        self.beta = nn.Sequential(
            nn.SiLU(),
            nn.Conv2d(self.conv_dim+self.trans_dim, self.conv_dim+self.trans_dim, 1, 1, 0, bias=True),
        )

    def forward(self, x, t):
        if len(t.shape) > 0:
            t = F.interpolate(t, size=x.shape[2:], mode='bilinear', align_corners=False)
        k = self.gamma(t)
        conv_trans_x = (1 + k) * self.conv1_1(x) + self.beta(k) # f_out = (1+α) f_in + β
        conv_x, trans_x = torch.split(conv_trans_x, (self.conv_dim, self.trans_dim), dim=1)
        conv_x = self.conv_block(conv_x) + conv_x
        trans_x = Rearrange('b c h w -> b h w c')(trans_x)
        trans_x = self.trans_block(trans_x)
        trans_x = Rearrange('b h w c -> b c h w')(trans_x)
        res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1))
        x = x + res

        return x


class SCUNet(nn.Module):

    def __init__(self, args={}):
        super().__init__()
        self.args = args
        self.res = self.args['res'] if 'res' in args else False
        self.rectified = self.args['rectified'] if 'rectified' in args else False
        in_nc = self.args['in_nc'] if 'in_nc' in args else 4
        out_nc = self.args['out_nc'] if 'out_nc' in args else 4
        config = self.args['config'] if 'config' in args else [2,2,2,2,2,2,2]
        dim = self.args['nf'] if 'nf' in args else 64
        drop_path_rate = self.args['drop_path_rate'] if 'drop_path_rate' in args else 0.0
        input_resolution = self.args['input_resolution'] if 'input_resolution' in args else 256
        self.head_dim = 32
        self.window_size = 8

        # drop path rate for each layer
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))]

        self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)]

        begin = 0
        self.m_down1 = [ConvTransBlock(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution) 
                      for i in range(config[0])] + \
                      [nn.Conv2d(dim, 2*dim, 2, 2, 0, bias=False)]

        begin += config[0]
        self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
                      for i in range(config[1])] + \
                      [nn.Conv2d(2*dim, 4*dim, 2, 2, 0, bias=False)]

        begin += config[1]
        self.m_down3 = [ConvTransBlock(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
                      for i in range(config[2])] + \
                      [nn.Conv2d(4*dim, 8*dim, 2, 2, 0, bias=False)]

        begin += config[2]
        self.m_body = [ConvTransBlock(4*dim, 4*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//8)
                    for i in range(config[3])]

        begin += config[3]
        self.m_up3 = [nn.ConvTranspose2d(8*dim, 4*dim, 2, 2, 0, bias=False),] + \
                      [ConvTransBlock(2*dim, 2*dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW',input_resolution//4)
                      for i in range(config[4])]
                      
        begin += config[4]
        self.m_up2 = [nn.ConvTranspose2d(4*dim, 2*dim, 2, 2, 0, bias=False),] + \
                      [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution//2)
                      for i in range(config[5])]
                      
        begin += config[5]
        self.m_up1 = [nn.ConvTranspose2d(2*dim, dim, 2, 2, 0, bias=False),] + \
                    [ConvTransBlock(dim//2, dim//2, self.head_dim, self.window_size, dpr[i+begin], 'W' if not i%2 else 'SW', input_resolution) 
                      for i in range(config[6])]

        self.m_tail = [nn.Conv2d(dim, out_nc, 3, 1, 1, bias=False)]

        self.m_head = nn.Sequential(*self.m_head)
        self.m_down1 = nn.Sequential(*self.m_down1)
        self.m_down2 = nn.Sequential(*self.m_down2)
        self.m_down3 = nn.Sequential(*self.m_down3)
        self.m_body = nn.Sequential(*self.m_body)
        self.m_up3 = nn.Sequential(*self.m_up3)
        self.m_up2 = nn.Sequential(*self.m_up2)
        self.m_up1 = nn.Sequential(*self.m_up1)
        self.m_tail = nn.Sequential(*self.m_tail)  
        #self.apply(self._init_weights)

    def layer_by_layer(self, modules, x, t):
        # 手动处理需要t的模块
        for layer in modules:
            if isinstance(layer, ConvTransBlock):
                x = layer(x, t)  # 传递t
            else:
                x = layer(x)
        return x

    def forward(self, x0, t):
        h, w = x0.size()[-2:]
        if self.rectified:
            t = t / (1 + t)# sigma->t
            x0 = x0 * (1-t)
        
        paddingBottom = int(np.ceil(h/64)*64-h)
        paddingRight = int(np.ceil(w/64)*64-w)
        x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0)
        if len(t.shape) > 0:
            t = F.interpolate(t, size=x0.shape[2:], mode='bilinear', align_corners=False)
            t = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(t)
        else:
            t = torch.mean(torch.zeros_like(x0), dim=1, keepdim=True) + t  # 保持t的形状与x0一致

        x1 = self.m_head(x0)
        x2 = self.layer_by_layer(self.m_down1, x1, t)
        x3 = self.layer_by_layer(self.m_down2, x2, t)
        x4 = self.layer_by_layer(self.m_down3, x3, t)
        x = self.layer_by_layer(self.m_body, x4, t)
        x = self.layer_by_layer(self.m_up3, x+x4, t)
        x = self.layer_by_layer(self.m_up2, x+x3, t)
        x = self.layer_by_layer(self.m_up1, x+x2, t)
        x = self.m_tail(x+x1)

        if self.res: x = x + x0
        x = x[..., :h, :w]
        
        if self.rectified:
            x = x / (1-t)

        return x

    def _init_weights(self, m):
        if isinstance(m, nn.Linear):
            trunc_normal_(m.weight, std=.02)
            if m.bias is not None:
                nn.init.constant_(m.bias, 0)
        elif isinstance(m, nn.LayerNorm):
            nn.init.constant_(m.bias, 0)
            nn.init.constant_(m.weight, 1.0)


if __name__ == '__main__':

    # torch.cuda.empty_cache()
    net = SCUNet({})

    x = torch.randn((2, 4, 640, 128))
    x = net(x, torch.randn((2, 1, 1, 1)))
    print(x.shape)