File size: 21,031 Bytes
0e07d71
 
 
 
 
 
 
c173203
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f0ca541
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c173203
47547b1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47547b1
 
 
 
 
 
 
 
0e07d71
47547b1
 
 
 
 
0e07d71
47547b1
 
 
 
 
 
 
0e07d71
47547b1
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47547b1
0e07d71
 
47547b1
 
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c173203
0e07d71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1f3466c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import numpy as np
import rawpy
from PIL import Image
import torch
import yaml
import gradio as gr
import tempfile
import spaces

# os.environ['CUDA_VISIBLE_DEVICES'] = '0'
import time
from torch.optim import Adam, lr_scheduler
from data_process import *
from utils import *
from archs import *
import sys
# 将 dist 目录添加到 Python 搜索路径
sys.path.append("./dist")
# from dist.isp_algos import *
from isp_algos import VST, inverse_VST, ddim, BiasLUT, SimpleNLF
from bm3d import bm3d

class YOND_Backend:
    def __init__(self):
        self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        #self.device = torch.device('cpu')  # 强制使用CPU,避免CUDA相关问题

        # 初始化处理参数
        self.p = {
            "ratio": 1.0, 
            "ispgain": 1.0,
            "h": 2160, 
            "w": 3840,
            "bl": 64.0, 
            "wp": 1023.0, 
            "gain": 0.0,
            "sigma": 0.0, 
            "wb": [2.0, 1.0, 2.0],
            "ccm": np.eye(3), 
            "scale": 959.0,  # 1023-64
            "ransac": False,
            "ddim_mode": False,
        }
        
        # 状态变量
        self.raw_data = None
        self.denoised_data = None
        self.denoised_npy = None
        self.denoised_rgb = None
        self.mask_data = None

        self.yond = None
        self.bias_lut = None

    # 新增:释放模型资源的方法
    def unload_model(self):
        if self.yond is not None:
            del self.yond
            self.yond = None
            self.bias_lut = None
            torch.cuda.empty_cache()  # 清理GPU缓存
            print("Model has unloaded, please reload config")
            gr.Success("Model has unloaded, please reload config")

    # 新增:清理缓存的方法
    def clear_cache(self):
        # 清理处理过程中的临时缓存、中间变量等
        self.raw_data = None
        self.denoised_data = None
        self.denoised_npy = None
        self.denoised_rgb = None
        self.mask_data = None
        gc.collect()
        print("Images has clear, please reload images")
        gr.Success("Images has clear, please reload images")

    def update_param(self, param, value):
        """更新处理参数"""
        try:

            if param in ['h', 'w']:
                self.p[param] = int(value)
            else:
                self.p[param] = float(value)
            
            # 自动更新相关参数
            if param in ['wp', 'bl']:
                self.p['scale'] = self.p['wp'] - self.p['bl']
            
        except (ValueError, TypeError) as e:
            gr.Error(f"参数更新失败: {str(e)}")
            raise ValueError(f"无效的参数值: {value}") from e

    def load_config(self, config_path):
        """加载配置文件"""
        try:
            self.yond = YOND_anytest(config_path, self.device)
            gr.Success(f"配置加载成功: {config_path}", duration=2)
            gr.Success(f"当前设备: {self.device}", duration=2)
        except Exception as e:
            gr.Error(f"配置加载失败: {str(e)}")
            raise RuntimeError(f"配置加载失败: {str(e)}")
        args = self.yond.args
        if 'pipeline' in args:
            self.p.update(args['pipeline'])
        else:
            self.p.update({'epoch':10, 'sigma_t':0.8, 'eta_t':0.85})
        model_path = f"{self.yond.fast_ckpt}/{self.yond.yond_name}_last_model.pth"
        self.load_model(model_path)
        # return model_path
        

    def load_model(self, model_path):
        """加载预训练模型"""
        try:     
            # 加载模型权重
            self.yond.load_model(model_path)
            self.bias_lut = BiasLUT(lut_path='checkpoints/bias_lut_2d.npy')
            if self.bias_lut is None:
                gr.Error(f"BiasLUT加载失败: {os.path.exists('checkpoints/bias_lut_2d.npy')}")
            gr.Success(f"模型加载成功: {model_path}", duration=2)
            
        except Exception as e:
            gr.Error(f"模型加载失败: {str(e)}")
            raise RuntimeError(f"模型加载失败: {str(e)}") from e

    def process_image(self, file_path, h, w, bl, wp, ratio, ispgain):
        """处理原始图像文件"""
        try:
            gr.Warning("正在可视化图像")
            # 更新处理参数
            self.update_param('h', h)
            self.update_param('w', w)
            self.update_param('bl', bl)
            self.update_param('wp', wp)
            self.update_param('ratio', ratio)
            self.update_param('ispgain', ispgain)

            # 重新初始化
            self.raw_data = None
            self.denoised_data = None
            self.mask_data = None
            self.p.update({'wb':[2,1,2], 'ccm':np.eye(3)})

            if file_path.lower().endswith(('.arw','.dng','.nef','.cr2')):
                with rawpy.imread(str(file_path)) as raw:
                    self.raw_data = raw.raw_image_visible.astype(np.uint16)
                    wb, ccm = self._extract_color_params(raw)
                    h, w = self.raw_data.shape
                    bl, wp = raw.black_level_per_channel[0], raw.white_level
                    scale = wp - bl
                    self.p.update({'wb':wb,'ccm':ccm,'h':h,'w':w,'bl':bl,'wp':wp,'scale':scale})
            elif file_path.lower().endswith(('.raw', '.npy')):
                try:
                    self.raw_data = np.fromfile(file_path, dtype=np.uint16)
                    self.raw_data = self.raw_data.reshape(
                        self.p['h'], self.p['w']
                    )
                except Exception as e:
                    gr.Warning(f"默认参数读取失败: {e}, 尝试使用魔↑术↓技↑巧↓")
                    info = rawread(file_path)
                    self.raw_data = info['raw']
                    self.p.update({
                        'h': info['h'], 'w': info['w'],
                        'bl': info['bl'], 'wp': info['wp'],
                        'scale': info['wp'] - info['bl']
                    })
                    gr.Success('基于 魔↑术↓技↑巧↓,参数已更新...', duration=2)
            # MATLAB格式处理
            elif file_path.lower().endswith('.mat'):
                with h5py.File(file_path, 'r') as f:
                    self.raw_data = np.array(f['x']).astype(np.float32) * 959 + 64
                # 尝试读取元数据
                meta_path = file_path.replace('NOISY', 'METADATA')
                if os.path.exists(meta_path):
                    self.meta = read_metadata(scipy.io.loadmat(meta_path))#scipy.io.loadmat(meta_path)
                self.p.update({
                    'h': self.raw_data.shape[0], 'w': self.raw_data.shape[1],
                    'bl': 64, 'wp': 1023, 'scale': 959
                })
            else:
                gr.Error("不支持的格式")
                raise ValueError("不支持的格式")
            
            # 生成预览图
            self.raw_data = self.raw_data.astype(np.float32)
            if self.p['clip']: self.raw_data = self.raw_data.clip(self.p['bl'],self.p['wp'])
            preview = self._generate_preview()
            return preview, self.p['h'], self.p['w'], self.p['bl'], self.p['wp']
        
        except Exception as e:
            gr.Error(f"图像可视化失败: {str(e)}")
            raise RuntimeError(f"图像处理失败: {str(e)}") from e
    
    def update_image(self, bl, wp, ratio, ispgain):
        """更新图像文件"""
        try:
            log("更新图像参数...")
            gr.Success("更新图像参数...", duration=2)
            # 更新处理参数
            if ispgain != self.p['ispgain'] and (bl != self.p['bl'] and wp != self.p['wp'] and ratio != self.p['ratio']):
                update_image_flag = True
            self.update_param('bl', bl)
            self.update_param('wp', wp)
            self.update_param('ratio', ratio)
            self.update_param('ispgain', ispgain)

            # 重新初始化
            self.denoised_data = None
            self.mask_data = None

            if self.raw_data is not None:
                gr.Success("图像可视化中...", duration=2)
                preview = self._generate_preview()
                return preview
            else:
                gr.Error("请先加载图像")
                raise RuntimeError("请先加载图像")
        except Exception as e:
            gr.Error(f"图像更新失败: {str(e)}")
            raise RuntimeError(f"图像更新失败: {str(e)}") from e

    @spaces.GPU
    def denoise(self, raw_vst, patch_size, nsr):
        ################# 准备去噪 #################
        self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        self.yond.net = self.yond.net.to(self.device)
        raw_vst = torch.from_numpy(raw_vst).float().to(self.device).permute(2,0,1)[None,]
        if 'guided' in self.yond.arch:
            t = torch.tensor(nsr*self.p['sigsnr'], dtype=raw_vst.dtype, device=self.device).view(-1,1,1,1)

            # Denoise & pad
            target_size = patch_size  # 设置目标块大小,可以根据需要调整 GPU:1024
            overlap_ratio = 1/8  # 设置重叠率,可以根据需要调整
            
            # 使用改进的 big_image_split 函数
            raw_inp, metadata = big_image_split(raw_vst, target_size, overlap_ratio)

            raw_dn = torch.zeros_like(raw_inp[:,:4])
            with torch.no_grad():
                if self.p['ddim_mode']:
                    for i in range(raw_inp.shape[0]):  # 处理所有切块
                        print(f'Patch: {i+1}/{len(raw_dn)}')
                        raw_dn[i] = ddim(raw_inp[i][None,].clip(None, 2), self.yond.net, t, epoch=self.p['epoch'], 
                                            sigma_t=self.p['sigma_t'], eta=self.p['eta_t'], sigma_corr=1.00)
                else:
                    for i in range(raw_inp.shape[0]):  # 处理所有切块
                        input_tensor = raw_inp[i][None,].clip(None, 2)
                        raw_dn[i] = self.yond.net(input_tensor, t).clamp(0,None)

            # 使用改进的 big_image_merge 函数
            raw_dn = big_image_merge(raw_dn, metadata, blend_mode='avg')
        
        ################# VST逆变换 #################
        raw_dn = raw_dn[0].permute(1,2,0).detach().cpu().numpy()
        return raw_dn

    def estimate_noise(self, double_est, ransac, patch_size):
        """执行噪声估计"""
        if not self.yond:
            gr.Error("请先加载模型")
            raise RuntimeError("请先加载模型")
        try:
            gr.Warning("正在估计噪声...")
            log('开始估计噪声')
            self.p['ransac'] = ransac
            # 预处理数据
            processed = (self.raw_data - self.p['bl']) / self.p['scale']
            lr_raw = bayer2rggb(processed) * self.p['ratio']
            
            # 粗估计
            reg, self.mask_data = SimpleNLF(
                rggb2bayer(lr_raw), 
                k=19, 
                eps=1e-3,
                setting={'mode': 'self', 'thr_mode':'score2', 'ransac': self.p['ransac']}
            )
            self.p['gain'] = reg[0] * self.p['scale']
            self.p['sigma'] = np.sqrt(max(reg[1], 0)) * self.p['scale']

            if double_est:
                log(" 使用精估计")
                if self.denoised_npy is None:
                    log(" 之前没去噪,先去噪再估计")
                    lr_raw_np = lr_raw * self.p['scale']
                    ######## EM-VST矫正VST噪图期望偏差 ########
                    bias_base = np.maximum(lr_raw_np, 0)
                    bias = self.bias_lut.get_lut(bias_base, K=self.p['gain'], sigGs=self.p['sigma'])
                    raw_vst = VST(lr_raw_np, self.p['sigma'], gain=self.p['gain'])
                    raw_vst = raw_vst - bias

                    ################# VST变换 #################
                    lower = VST(0, self.p['sigma'], gain=self.p['gain'])
                    upper = VST(self.p['scale'], self.p['sigma'], gain=self.p['gain'])
                    nsr = 1 / (upper - lower)
                    raw_vst = (raw_vst - lower) / (upper - lower)

                    ################# 去噪 #################
                    raw_dn = self.denoise(raw_vst, patch_size, nsr)
                        
                    ################# VST逆变换 #################
                    raw_dn = raw_dn * (upper - lower) + lower
                    self.denoised_data = inverse_VST(raw_dn, self.p['sigma'], gain=self.p['gain']) / self.p['scale']
                    self.denoised_npy = rggb2bayer(self.denoised_data)

                reg, self.mask_data = SimpleNLF(rggb2bayer(lr_raw), self.denoised_npy, k=13, 
                                                setting={'mode':'collab', 'thr_mode':'score3', 'ransac': self.p['ransac']})
                self.p['gain'] = reg[0] * self.p['scale']
                self.p['sigma'] = np.sqrt(max(reg[1], 0)) * self.p['scale']
            
            # 生成可视化结果
            mask_img = self._visualize_mask()
            log(f"噪声估计完成: gain={self.p['gain']:.2f}, sigma={self.p['sigma']:.2f}")
            gr.Success(f"噪声估计完成: gain={self.p['gain']:.2f}, sigma={self.p['sigma']:.2f}", duration=2)
            return mask_img, float(f"{self.p['gain']:.2f}"), float(f"{self.p['sigma']:.2f}")
        except Exception as e:
            gr.Error(f"噪声估计失败: {str(e)}")
            raise RuntimeError(f"噪声估计失败: {str(e)}") from e

    def enhance_image(self, gain, sigma, sigsnr, ddim_mode, patch_size):
        """执行图像增强"""
        if not self.yond:
            log('请先加载模型')
            raise RuntimeError("请先加载模型")
        
        try:
            gr.Warning("正在增强图像...")
            log('正在增强图像...')
            # 更新处理参数
            self.p['ddim_mode'] = ddim_mode
            self.update_param('gain', gain)
            self.update_param('sigma', sigma)
            self.update_param('sigsnr', sigsnr)

            # 数据预处理
            processed = ((self.raw_data - self.p['bl']) / self.p['scale'])
            lr_raw = bayer2rggb(processed) * self.p['ratio']
            lr_raw_np = lr_raw * self.p['scale']
            
            bias_base = np.maximum(lr_raw_np, 0)
            bias = self.bias_lut.get_lut(bias_base, K=self.p['gain'], sigGs=self.p['sigma'])
            raw_vst = VST(lr_raw_np, self.p['sigma'], gain=self.p['gain'])
            raw_vst = raw_vst - bias

            ################# VST变换 #################
            lower = VST(0, self.p['sigma'], gain=self.p['gain'])
            upper = VST(self.p['scale'], self.p['sigma'], gain=self.p['gain'])
            nsr = 1 / (upper - lower)
            raw_vst = (raw_vst - lower) / (upper - lower)
            
            ################# 准备去噪 #################
            raw_dn = self.denoise(raw_vst, patch_size, nsr)
            
            ################# VST逆变换 #################
            raw_dn = raw_dn * (upper - lower) + lower
            self.denoised_data = inverse_VST(raw_dn, self.p['sigma'], gain=self.p['gain']) / self.p['scale']
            
            self.denoised_npy = rggb2bayer(self.denoised_data)
            # 保存结果
            result = self._generate_result()
            log("图像增强完成,请查看结果")
            gr.Success("图像增强完成,请查看结果")
            return result
        except Exception as e:
            gr.Error(f"图像增强失败: {str(e)}")
            raise RuntimeError(f"增强失败: {str(e)}") from e

    # 私有工具方法 ------------------------------------------------------------
    def _extract_color_params(self, raw):
        """从RAW文件中提取颜色参数"""
        wb = np.array(raw.camera_whitebalance) / raw.camera_whitebalance[1]
        ccm = raw.color_matrix[:3, :3].astype(np.float32)
        return wb, ccm if ccm[0,0] != 0 else np.eye(3)

    def _generate_preview(self):
        """生成预览图像"""
        processed = (self.raw_data - self.p['bl']) / self.p['scale']
        rgb = FastISP(bayer2rggb(processed)*self.p['ratio']*self.p['ispgain'], 
                    self.p['wb'], self.p['ccm'])
        rgb = (rgb.clip(0, 1) * 255).astype(np.uint8)
        preview_img = Image.fromarray(rgb)
        return preview_img

    def _visualize_mask(self):
        """可视化噪声掩模"""
        from matplotlib import pyplot as plt
        # 检查是否为单通道mask
        if self.mask_data.ndim != 2:
            gr.Error("Input mask must be a 2D array")
            raise ValueError("Input mask must be a 2D array")
        
        # 创建viridis颜色映射的查找表
        cmap = plt.cm.viridis
        x = np.linspace(0, 1, 256)
        lut = (cmap(x)[:, :3] * 255).astype(np.uint8)
        
        # 将mask值缩放到0-255范围并转换为整数索引
        mask_indices = (np.clip(self.mask_data, 0, 1) * 255).astype(np.uint8)
        
        # 使用高级索引进行向量化映射
        rgb_img = lut[mask_indices]
        
        # 缩放并转换为PIL图像
        rgb_img = cv2.resize(rgb_img, (self.p['w'], self.p['h']), interpolation=cv2.INTER_LINEAR)
        mask_img = Image.fromarray(rgb_img)
        return mask_img

    def _generate_result(self):
        """保存最终结果"""
        rgb = FastISP(self.denoised_data*self.p['ispgain'], 
                     self.p['wb'], 
                     self.p['ccm'])
        self.denoised_rgb = Image.fromarray((rgb.clip(0, 1) * 255).astype(np.uint8))
        return self.denoised_rgb
    
    def save_result_npy(self):
        """保存结果到 NPY 文件"""
        if self.denoised_npy is None:
            gr.Error("请先进行图像增强")
            raise RuntimeError("请先进行图像增强")
        with tempfile.NamedTemporaryFile(suffix=".npy", delete=False) as tmp_file:
            tmp_file_path = tmp_file.name
        np.save(tmp_file_path, self.denoised_npy.astype(np.float32))
        return tmp_file_path

    def save_result_png(self):
        """保存结果到 PNG 文件"""
        if self.denoised_npy is None:
            gr.Error("请先进行图像增强")
            raise RuntimeError("请先进行图像增强")
        with tempfile.NamedTemporaryFile(suffix=".png", delete=False) as tmp_file_png:
            tmp_file_path_png = tmp_file_png.name
        cv2.imwrite(tmp_file_path_png, np.array(self.denoised_rgb)[:,:,::-1])
        return tmp_file_path_png

class YONDParser():
    def __init__(self, yaml_path="runfiles/Gaussian/gru32n_paper_noclip.yml"):
        self.runfile = yaml_path
        self.mode = 'eval'
        self.debug = False
        self.nofig = False
        self.nohost = False
        self.gpu = 0

class YOND_anytest():
    def __init__(self, yaml_path, device):
        # 初始化
        self.device = device
        self.parser = YONDParser(yaml_path)
        self.initialization()
    
    def initialization(self):
        with open(self.parser.runfile, 'r', encoding="utf-8") as f:
            self.args = yaml.load(f.read(), Loader=yaml.FullLoader)
        self.mode = self.args['mode'] if self.parser.mode is None else self.parser.mode
        if self.parser.debug is True:
            self.args['num_workers'] = 0
            warnings.warn('You are using debug mode, only main worker(cpu) is used!!!')
        if 'clip' not in self.args['dst']: 
            self.args['dst']['clip'] = False
        self.save_plot = False if self.parser.nofig else True
        self.args['dst']['mode'] = self.mode
        self.hostname, self.hostpath, self.multi_gpu = get_host_with_dir()
        self.yond_dir = self.args['checkpoint']
        if not self.parser.nohost:
            for key in self.args:
                if 'dst' in key:
                    self.args[key]['root_dir'] = f"{self.hostpath}/{self.args[key]['root_dir']}"
        self.dst = self.args['dst']
        self.arch = self.args['arch']
        self.pipe = self.args['pipeline']
        if self.pipe['bias_corr'] == 'none':
            self.pipe['bias_corr'] = None

        self.yond_name = self.args['model_name']
        self.method_name = self.args['method_name']
        self.fast_ckpt = self.args['fast_ckpt']
        self.sample_dir = os.path.join(self.args['result_dir'] ,f"{self.method_name}")
        os.makedirs(self.sample_dir, exist_ok=True)
        os.makedirs('./logs', exist_ok=True)
        #os.makedirs('./metrics', exist_ok=True)
    
    def load_model(self, model_path):
        # 模型加载
        self.net = globals()[self.arch['name']](self.arch)
        model = torch.load(model_path, map_location='cpu')
        self.net = load_weights(self.net, model, by_name=False)