File size: 1,643 Bytes
833aed9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
"""
Pydantic models for request/response validation
"""

from typing import Dict, List, Optional
from pydantic import BaseModel, Field


class ModerateRequest(BaseModel):
    text: str = Field(..., description="Text to moderate")
    model: str = Field(
        default="lionguard-2.1",
        description="Model to use: lionguard-2, lionguard-2.1, or lionguard-2-lite"
    )


class CategoryScore(BaseModel):
    name: str
    emoji: str
    max_score: float


class ModerateResponse(BaseModel):
    binary_score: float
    binary_verdict: str  # "pass", "warn", "fail"
    binary_percentage: int
    categories: List[CategoryScore]
    text_id: str
    model_used: str


class FeedbackRequest(BaseModel):
    text_id: str = Field(..., description="ID of the text being voted on")
    agree: bool = Field(..., description="True for thumbs up, False for thumbs down")


class FeedbackResponse(BaseModel):
    success: bool
    message: str


class ChatMessage(BaseModel):
    role: str
    content: str


class ChatHistories(BaseModel):
    no_moderation: List[ChatMessage] = Field(default_factory=list)
    openai_moderation: List[ChatMessage] = Field(default_factory=list)
    lionguard: List[ChatMessage] = Field(default_factory=list)


class ChatRequest(BaseModel):
    message: str = Field(..., description="Message to send to all guardrails")
    model: str = Field(
        default="lionguard-2.1",
        description="LionGuard model variant to use"
    )
    histories: ChatHistories = Field(default_factory=ChatHistories)


class ChatResponse(BaseModel):
    histories: ChatHistories
    lionguard_score: Optional[float] = None