Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoTokenizer, AutoProcessor
|
| 3 |
+
from qwen_vl_utils import process_vision_info
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import io
|
| 6 |
+
import base64
|
| 7 |
+
from IPython.display import display
|
| 8 |
+
from datasets import load_dataset
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
max_token_budget = 512
|
| 12 |
+
|
| 13 |
+
min_pixels = 1 * 28 * 28
|
| 14 |
+
max_pixels = max_token_budget * 28 * 28
|
| 15 |
+
processor = AutoProcessor.from_pretrained(
|
| 16 |
+
"Qwen/Qwen2-VL-2B-Instruct", min_pixels=min_pixels, max_pixels=max_pixels
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
ds = load_dataset("gigant/tib-bench-vlm")["train"]
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def segments(example):
|
| 23 |
+
# create a text with the <image> tokens from the timestamps of the extracted keyframes and transcript
|
| 24 |
+
text = ""
|
| 25 |
+
segment_i = 0
|
| 26 |
+
for i, timestamp in enumerate(example['keyframes']['timestamp']):
|
| 27 |
+
text += f"<image>" #f"<image {i}>"
|
| 28 |
+
start, end = timestamp[0], timestamp[1]
|
| 29 |
+
while segment_i < len(example["transcript_segments"]["seek"]) and end > example["transcript_segments"]["seek"][segment_i] * 0.01:
|
| 30 |
+
text += example["transcript_segments"]["text"][segment_i]
|
| 31 |
+
segment_i += 1
|
| 32 |
+
return text
|
| 33 |
+
|
| 34 |
+
def create_interleaved_html(text, slides, scale=0.4, max_width=600):
|
| 35 |
+
"""
|
| 36 |
+
Creates an HTML string with interleaved images and text segments.
|
| 37 |
+
The images are converted to base64 and embedded directly in the HTML.
|
| 38 |
+
"""
|
| 39 |
+
html = []
|
| 40 |
+
segments = text.split("<image>")
|
| 41 |
+
|
| 42 |
+
for j, segment in enumerate(segments): # Skip the first empty string bc of leading <image>
|
| 43 |
+
# Add the image
|
| 44 |
+
if j > 0:
|
| 45 |
+
img = slides[j - 1]
|
| 46 |
+
img_width = int(img.width * scale)
|
| 47 |
+
img_height = int(img.height * scale)
|
| 48 |
+
if img_width > max_width:
|
| 49 |
+
ratio = max_width / img_width
|
| 50 |
+
img_width = max_width
|
| 51 |
+
img_height = int(img_height * ratio)
|
| 52 |
+
|
| 53 |
+
# Convert image to base64
|
| 54 |
+
buffer = io.BytesIO()
|
| 55 |
+
img.resize((img_width, img_height)).save(buffer, format="PNG")
|
| 56 |
+
img_str = base64.b64encode(buffer.getvalue()).decode("utf-8")
|
| 57 |
+
|
| 58 |
+
html.append(f'<img src="data:image/png;base64,{img_str}" style="max-width: {max_width}px; display: block; margin: 20px auto;">')
|
| 59 |
+
# Add the text segment after the image
|
| 60 |
+
html.append(f'<div style="white-space: pre-wrap;">{segment}</div>')
|
| 61 |
+
|
| 62 |
+
return "".join(html)
|
| 63 |
+
|
| 64 |
+
def doc_to_messages(text, slides):
|
| 65 |
+
content = []
|
| 66 |
+
segments = text.split("<image>")
|
| 67 |
+
for j, segment in enumerate(segments):
|
| 68 |
+
if j > 0:
|
| 69 |
+
content.append({"type": "image", "image": slides[j - 1]})
|
| 70 |
+
content.append({"type": "text", "text": segment})
|
| 71 |
+
messages = [
|
| 72 |
+
{
|
| 73 |
+
"role": "user",
|
| 74 |
+
"content": content,
|
| 75 |
+
}
|
| 76 |
+
]
|
| 77 |
+
# Preparation for inference
|
| 78 |
+
text = processor.apply_chat_template(
|
| 79 |
+
messages, tokenize=False, add_generation_prompt=True
|
| 80 |
+
)
|
| 81 |
+
print(text)
|
| 82 |
+
image_inputs, video_inputs = process_vision_info(messages)
|
| 83 |
+
inputs = processor(
|
| 84 |
+
text=[text],
|
| 85 |
+
images=image_inputs,
|
| 86 |
+
videos=video_inputs,
|
| 87 |
+
padding=True,
|
| 88 |
+
return_tensors="pt",
|
| 89 |
+
)
|
| 90 |
+
return inputs
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
# Global variables to keep track of current document
|
| 94 |
+
current_doc_index = 0
|
| 95 |
+
annotations = []
|
| 96 |
+
|
| 97 |
+
def load_document(index):
|
| 98 |
+
"""Load a specific document from the dataset"""
|
| 99 |
+
if 0 <= index < len(ds):
|
| 100 |
+
doc = ds[index]
|
| 101 |
+
segments_doc = segments(doc)
|
| 102 |
+
return (
|
| 103 |
+
doc["title"],
|
| 104 |
+
doc["abstract"],
|
| 105 |
+
create_interleaved_html(segments_doc, doc["slides"], scale=0.7),
|
| 106 |
+
doc_to_messages(segments_doc, doc["slides"]).input_ids.shape[1],
|
| 107 |
+
)
|
| 108 |
+
return ("", "", "", "")
|
| 109 |
+
|
| 110 |
+
def get_next_document():
|
| 111 |
+
"""Get the next document in the dataset"""
|
| 112 |
+
global current_doc_index
|
| 113 |
+
current_doc_index = (current_doc_index + 1) % len(ds)
|
| 114 |
+
return load_document(current_doc_index)
|
| 115 |
+
|
| 116 |
+
def get_prev_document():
|
| 117 |
+
"""Get the previous document in the dataset"""
|
| 118 |
+
global current_doc_index
|
| 119 |
+
current_doc_index = (current_doc_index - 1) % len(ds)
|
| 120 |
+
return load_document(current_doc_index)
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
theme = gr.themes.Ocean()
|
| 124 |
+
|
| 125 |
+
with gr.Blocks(theme=theme) as demo:
|
| 126 |
+
gr.Markdown("# Slide Presentation Visualization Tool")
|
| 127 |
+
with gr.Row():
|
| 128 |
+
with gr.Column():
|
| 129 |
+
body = gr.HTML(max_height=400)
|
| 130 |
+
|
| 131 |
+
# Function to update the interleaved view
|
| 132 |
+
def update_interleaved_view(title, abstract, body, token_count):
|
| 133 |
+
return body
|
| 134 |
+
|
| 135 |
+
with gr.Column():
|
| 136 |
+
title = gr.Textbox(label="Title", interactive=False, max_lines=1)
|
| 137 |
+
abstract = gr.Textbox(label="Abstract", interactive=False, max_lines=8)
|
| 138 |
+
token_count = gr.Textbox(label=f"Token Count (Qwen2-VL with under {max_token_budget} tokens per image)", interactive=False, max_lines=1)
|
| 139 |
+
|
| 140 |
+
title.change(
|
| 141 |
+
fn=update_interleaved_view,
|
| 142 |
+
inputs=[title, abstract, body, token_count],
|
| 143 |
+
outputs=body,
|
| 144 |
+
)
|
| 145 |
+
# Load first document
|
| 146 |
+
title_val, abstract_val, body_val, token_count_val = load_document(current_doc_index)
|
| 147 |
+
title.value = title_val
|
| 148 |
+
abstract.value = abstract_val
|
| 149 |
+
body.value = body_val
|
| 150 |
+
token_count.value = str(token_count_val)
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
with gr.Row():
|
| 154 |
+
prev_button = gr.Button("Previous Document")
|
| 155 |
+
prev_button.click(fn=get_prev_document, inputs=[], outputs=[title, abstract, body, token_count])
|
| 156 |
+
next_button = gr.Button("Next Document")
|
| 157 |
+
next_button.click(fn=get_next_document, inputs=[], outputs=[title, abstract, body, token_count])
|
| 158 |
+
|
| 159 |
+
demo.launch()
|