Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,12 +5,14 @@ import streamlit as st
|
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
| 7 |
import nltk
|
|
|
|
|
|
|
| 8 |
|
| 9 |
from langchain.chat_models import ChatOpenAI
|
| 10 |
from langchain.schema import SystemMessage, HumanMessage
|
| 11 |
from sentence_transformers import SentenceTransformer, util
|
| 12 |
|
| 13 |
-
#
|
| 14 |
try:
|
| 15 |
import spacy
|
| 16 |
nlp = spacy.load("en_core_web_sm")
|
|
@@ -26,7 +28,7 @@ model = SentenceTransformer('all-MiniLM-L6-v2')
|
|
| 26 |
|
| 27 |
@st.cache_data
|
| 28 |
def load_glossary_from_excel(glossary_file_bytes) -> dict:
|
| 29 |
-
"""Load glossary from an Excel file,
|
| 30 |
df = pd.read_excel(glossary_file_bytes)
|
| 31 |
glossary = {}
|
| 32 |
|
|
@@ -48,37 +50,52 @@ def compute_glossary_embeddings_cached(glossary_items: tuple):
|
|
| 48 |
embeddings = model.encode(glossary_terms, convert_to_tensor=True)
|
| 49 |
return glossary_terms, embeddings
|
| 50 |
|
| 51 |
-
def
|
| 52 |
-
"""
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
def enforce_glossary(text: str, glossary: dict, threshold: float) -> str:
|
| 61 |
-
"""Applies glossary replacements based on semantic similarity."""
|
| 62 |
glossary_items = tuple(sorted(glossary.items()))
|
| 63 |
glossary_terms, glossary_embeddings = compute_glossary_embeddings_cached(glossary_items)
|
| 64 |
|
| 65 |
sentences = nltk.tokenize.sent_tokenize(text) if not use_spacy else [sent.text for sent in nlp(text).sents]
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
if not sentence.strip():
|
| 70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
sentence_embedding = model.encode(sentence, convert_to_tensor=True)
|
| 72 |
cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings)
|
| 73 |
max_score, max_idx = torch.max(cos_scores, dim=1)
|
| 74 |
|
| 75 |
-
if max_score.item() >=
|
| 76 |
term = glossary_terms[max_idx]
|
| 77 |
replacement = glossary[term]
|
| 78 |
pattern = r'\b' + re.escape(term) + r'\b'
|
| 79 |
sentence = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
|
| 80 |
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
|
| 83 |
return " ".join(updated_sentences)
|
| 84 |
|
|
@@ -91,9 +108,18 @@ def validate_translation(original_text, final_text):
|
|
| 91 |
response = translator(messages)
|
| 92 |
return response.content.strip()
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
# Streamlit UI
|
| 95 |
-
st.title("AI-Powered English to Canadian French Translator")
|
| 96 |
-
st.write("This
|
| 97 |
|
| 98 |
input_text = st.text_area("Enter text to translate:")
|
| 99 |
glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"])
|
|
@@ -106,12 +132,13 @@ if st.button("Translate"):
|
|
| 106 |
st.error("Glossary file is required.")
|
| 107 |
else:
|
| 108 |
glossary = load_glossary_from_excel(glossary_file)
|
| 109 |
-
translated_text =
|
| 110 |
glossary_enforced_text = enforce_glossary(translated_text, glossary, threshold)
|
| 111 |
-
|
|
|
|
| 112 |
|
| 113 |
st.subheader("Final Translated Text:")
|
| 114 |
-
st.write(
|
| 115 |
|
| 116 |
st.subheader("Validation Check:")
|
| 117 |
st.write(validation_result)
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import torch
|
| 7 |
import nltk
|
| 8 |
+
import time
|
| 9 |
+
from concurrent.futures import ThreadPoolExecutor
|
| 10 |
|
| 11 |
from langchain.chat_models import ChatOpenAI
|
| 12 |
from langchain.schema import SystemMessage, HumanMessage
|
| 13 |
from sentence_transformers import SentenceTransformer, util
|
| 14 |
|
| 15 |
+
# Load NLP libraries
|
| 16 |
try:
|
| 17 |
import spacy
|
| 18 |
nlp = spacy.load("en_core_web_sm")
|
|
|
|
| 28 |
|
| 29 |
@st.cache_data
|
| 30 |
def load_glossary_from_excel(glossary_file_bytes) -> dict:
|
| 31 |
+
"""Load glossary from an Excel file, apply lemmatization, and sort by length."""
|
| 32 |
df = pd.read_excel(glossary_file_bytes)
|
| 33 |
glossary = {}
|
| 34 |
|
|
|
|
| 50 |
embeddings = model.encode(glossary_terms, convert_to_tensor=True)
|
| 51 |
return glossary_terms, embeddings
|
| 52 |
|
| 53 |
+
def retry_translate_text(text: str, max_retries=3) -> str:
|
| 54 |
+
"""Retries translation in case of API failure."""
|
| 55 |
+
for attempt in range(max_retries):
|
| 56 |
+
try:
|
| 57 |
+
messages = [
|
| 58 |
+
SystemMessage(content="You are a professional translator. Translate the following text to Canadian French while preserving its meaning and context."),
|
| 59 |
+
HumanMessage(content=text)
|
| 60 |
+
]
|
| 61 |
+
response = translator(messages)
|
| 62 |
+
return response.content.strip()
|
| 63 |
+
except Exception as e:
|
| 64 |
+
print(f"Error in translation (attempt {attempt+1}): {e}")
|
| 65 |
+
time.sleep(2) # Wait before retrying
|
| 66 |
+
return "Translation failed. Please try again later."
|
| 67 |
|
| 68 |
def enforce_glossary(text: str, glossary: dict, threshold: float) -> str:
|
| 69 |
+
"""Applies glossary replacements based on semantic similarity with batch processing."""
|
| 70 |
glossary_items = tuple(sorted(glossary.items()))
|
| 71 |
glossary_terms, glossary_embeddings = compute_glossary_embeddings_cached(glossary_items)
|
| 72 |
|
| 73 |
sentences = nltk.tokenize.sent_tokenize(text) if not use_spacy else [sent.text for sent in nlp(text).sents]
|
| 74 |
+
|
| 75 |
+
def process_sentence(sentence):
|
| 76 |
+
"""Processes a single sentence with glossary enforcement."""
|
| 77 |
if not sentence.strip():
|
| 78 |
+
return sentence
|
| 79 |
+
|
| 80 |
+
# Dynamic threshold adjustment
|
| 81 |
+
sentence_length = len(sentence.split())
|
| 82 |
+
dynamic_threshold = 0.85 if sentence_length > 10 else 0.75 # Adjust threshold based on sentence length
|
| 83 |
+
|
| 84 |
sentence_embedding = model.encode(sentence, convert_to_tensor=True)
|
| 85 |
cos_scores = util.pytorch_cos_sim(sentence_embedding, glossary_embeddings)
|
| 86 |
max_score, max_idx = torch.max(cos_scores, dim=1)
|
| 87 |
|
| 88 |
+
if max_score.item() >= dynamic_threshold:
|
| 89 |
term = glossary_terms[max_idx]
|
| 90 |
replacement = glossary[term]
|
| 91 |
pattern = r'\b' + re.escape(term) + r'\b'
|
| 92 |
sentence = re.sub(pattern, replacement, sentence, flags=re.IGNORECASE)
|
| 93 |
|
| 94 |
+
return sentence.strip()
|
| 95 |
+
|
| 96 |
+
# Process sentences in parallel for speed
|
| 97 |
+
with ThreadPoolExecutor() as executor:
|
| 98 |
+
updated_sentences = list(executor.map(process_sentence, sentences))
|
| 99 |
|
| 100 |
return " ".join(updated_sentences)
|
| 101 |
|
|
|
|
| 108 |
response = translator(messages)
|
| 109 |
return response.content.strip()
|
| 110 |
|
| 111 |
+
def grammar_correction(text: str) -> str:
|
| 112 |
+
"""Uses GPT to fix grammar issues in the final translated text."""
|
| 113 |
+
messages = [
|
| 114 |
+
SystemMessage(content="You are a French grammar expert. Correct any grammatical mistakes in the following text."),
|
| 115 |
+
HumanMessage(content=text)
|
| 116 |
+
]
|
| 117 |
+
response = translator(messages)
|
| 118 |
+
return response.content.strip()
|
| 119 |
+
|
| 120 |
# Streamlit UI
|
| 121 |
+
st.title("Optimized AI-Powered English to Canadian French Translator")
|
| 122 |
+
st.write("This version includes retries, batch processing, glossary tuning, and grammar correction.")
|
| 123 |
|
| 124 |
input_text = st.text_area("Enter text to translate:")
|
| 125 |
glossary_file = st.file_uploader("Upload Glossary File (Excel)", type=["xlsx"])
|
|
|
|
| 132 |
st.error("Glossary file is required.")
|
| 133 |
else:
|
| 134 |
glossary = load_glossary_from_excel(glossary_file)
|
| 135 |
+
translated_text = retry_translate_text(input_text)
|
| 136 |
glossary_enforced_text = enforce_glossary(translated_text, glossary, threshold)
|
| 137 |
+
corrected_text = grammar_correction(glossary_enforced_text)
|
| 138 |
+
validation_result = validate_translation(input_text, corrected_text)
|
| 139 |
|
| 140 |
st.subheader("Final Translated Text:")
|
| 141 |
+
st.write(corrected_text)
|
| 142 |
|
| 143 |
st.subheader("Validation Check:")
|
| 144 |
st.write(validation_result)
|