Spaces:
Sleeping
Sleeping
Update Space (evaluate main: 828c6327)
Browse files- README.md +110 -5
- app.py +6 -0
- requirements.txt +5 -0
- wiki_split.py +355 -0
README.md
CHANGED
|
@@ -1,12 +1,117 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: WikiSplit
|
| 3 |
+
emoji: 🤗
|
| 4 |
+
colorFrom: blue
|
| 5 |
+
colorTo: red
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.0.2
|
| 8 |
app_file: app.py
|
| 9 |
pinned: false
|
| 10 |
+
tags:
|
| 11 |
+
- evaluate
|
| 12 |
+
- metric
|
| 13 |
---
|
| 14 |
|
| 15 |
+
# Metric Card for WikiSplit
|
| 16 |
+
|
| 17 |
+
## Metric description
|
| 18 |
+
|
| 19 |
+
WikiSplit is the combination of three metrics: [SARI](https://huggingface.co/metrics/sari), [exact match](https://huggingface.co/metrics/exact_match) and [SacreBLEU](https://huggingface.co/metrics/sacrebleu).
|
| 20 |
+
|
| 21 |
+
It can be used to evaluate the quality of sentence splitting approaches, which require rewriting a long sentence into two or more coherent short sentences, e.g. based on the [WikiSplit dataset](https://huggingface.co/datasets/wiki_split).
|
| 22 |
+
|
| 23 |
+
## How to use
|
| 24 |
+
|
| 25 |
+
The WIKI_SPLIT metric takes three inputs:
|
| 26 |
+
|
| 27 |
+
`sources`: a list of source sentences, where each sentence should be a string.
|
| 28 |
+
|
| 29 |
+
`predictions`: a list of predicted sentences, where each sentence should be a string.
|
| 30 |
+
|
| 31 |
+
`references`: a list of lists of reference sentences, where each sentence should be a string.
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
>>> wiki_split = evaluate.load("wiki_split")
|
| 35 |
+
>>> sources = ["About 95 species are currently accepted ."]
|
| 36 |
+
>>> predictions = ["About 95 you now get in ."]
|
| 37 |
+
>>> references= [["About 95 species are currently known ."]]
|
| 38 |
+
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
|
| 39 |
+
```
|
| 40 |
+
## Output values
|
| 41 |
+
|
| 42 |
+
This metric outputs a dictionary containing three scores:
|
| 43 |
+
|
| 44 |
+
`sari`: the [SARI](https://huggingface.co/metrics/sari) score, whose range is between `0.0` and `100.0` -- the higher the value, the better the performance of the model being evaluated, with a SARI of 100 being a perfect score.
|
| 45 |
+
|
| 46 |
+
`sacrebleu`: the [SacreBLEU](https://huggingface.co/metrics/sacrebleu) score, which can take any value between `0.0` and `100.0`, inclusive.
|
| 47 |
+
|
| 48 |
+
`exact`: the [exact match](https://huggingface.co/metrics/exact_match) score, which represents the sum of all of the individual exact match scores in the set, divided by the total number of predictions in the set. It ranges from `0.0` to `100`, inclusive. Here, `0.0` means no prediction/reference pairs were matches, while `100.0` means they all were.
|
| 49 |
+
|
| 50 |
+
```python
|
| 51 |
+
>>> print(results)
|
| 52 |
+
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
|
| 53 |
+
```
|
| 54 |
+
|
| 55 |
+
### Values from popular papers
|
| 56 |
+
|
| 57 |
+
This metric was initially used by [Rothe et al.(2020)](https://arxiv.org/pdf/1907.12461.pdf) to evaluate the performance of different split-and-rephrase approaches on the [WikiSplit dataset](https://huggingface.co/datasets/wiki_split). They reported a SARI score of 63.5, a SacreBLEU score of 77.2, and an EXACT_MATCH score of 16.3.
|
| 58 |
+
|
| 59 |
+
## Examples
|
| 60 |
+
|
| 61 |
+
Perfect match between prediction and reference:
|
| 62 |
+
|
| 63 |
+
```python
|
| 64 |
+
>>> wiki_split = evaluate.load("wiki_split")
|
| 65 |
+
>>> sources = ["About 95 species are currently accepted ."]
|
| 66 |
+
>>> predictions = ["About 95 species are currently accepted ."]
|
| 67 |
+
>>> references= [["About 95 species are currently accepted ."]]
|
| 68 |
+
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
|
| 69 |
+
>>> print(results)
|
| 70 |
+
{'sari': 100.0, 'sacrebleu': 100.00000000000004, 'exact': 100.0
|
| 71 |
+
```
|
| 72 |
+
|
| 73 |
+
Partial match between prediction and reference:
|
| 74 |
+
|
| 75 |
+
```python
|
| 76 |
+
>>> wiki_split = evaluate.load("wiki_split")
|
| 77 |
+
>>> sources = ["About 95 species are currently accepted ."]
|
| 78 |
+
>>> predictions = ["About 95 you now get in ."]
|
| 79 |
+
>>> references= [["About 95 species are currently known ."]]
|
| 80 |
+
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
|
| 81 |
+
>>> print(results)
|
| 82 |
+
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
|
| 83 |
+
```
|
| 84 |
+
|
| 85 |
+
No match between prediction and reference:
|
| 86 |
+
|
| 87 |
+
```python
|
| 88 |
+
>>> wiki_split = evaluate.load("wiki_split")
|
| 89 |
+
>>> sources = ["About 95 species are currently accepted ."]
|
| 90 |
+
>>> predictions = ["Hello world ."]
|
| 91 |
+
>>> references= [["About 95 species are currently known ."]]
|
| 92 |
+
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
|
| 93 |
+
>>> print(results)
|
| 94 |
+
{'sari': 14.047619047619046, 'sacrebleu': 0.0, 'exact': 0.0}
|
| 95 |
+
```
|
| 96 |
+
## Limitations and bias
|
| 97 |
+
|
| 98 |
+
This metric is not the official metric to evaluate models on the [WikiSplit dataset](https://huggingface.co/datasets/wiki_split). It was initially proposed by [Rothe et al.(2020)](https://arxiv.org/pdf/1907.12461.pdf), whereas the [original paper introducing the WikiSplit dataset (2018)](https://aclanthology.org/D18-1080.pdf) uses different metrics to evaluate performance, such as corpus-level [BLEU](https://huggingface.co/metrics/bleu) and sentence-level BLEU.
|
| 99 |
+
|
| 100 |
+
## Citation
|
| 101 |
+
|
| 102 |
+
```bibtex
|
| 103 |
+
@article{rothe2020leveraging,
|
| 104 |
+
title={Leveraging pre-trained checkpoints for sequence generation tasks},
|
| 105 |
+
author={Rothe, Sascha and Narayan, Shashi and Severyn, Aliaksei},
|
| 106 |
+
journal={Transactions of the Association for Computational Linguistics},
|
| 107 |
+
volume={8},
|
| 108 |
+
pages={264--280},
|
| 109 |
+
year={2020},
|
| 110 |
+
publisher={MIT Press}
|
| 111 |
+
}
|
| 112 |
+
```
|
| 113 |
+
|
| 114 |
+
## Further References
|
| 115 |
+
|
| 116 |
+
- [WikiSplit dataset](https://huggingface.co/datasets/wiki_split)
|
| 117 |
+
- [WikiSplit paper (Botha et al., 2018)](https://aclanthology.org/D18-1080.pdf)
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import evaluate
|
| 2 |
+
from evaluate.utils import launch_gradio_widget
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
module = evaluate.load("wiki_split")
|
| 6 |
+
launch_gradio_widget(module)
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# TODO: fix github to release
|
| 2 |
+
git+https://github.com/huggingface/evaluate.git@b6e6ed7f3e6844b297bff1b43a1b4be0709b9671
|
| 3 |
+
datasets~=2.0
|
| 4 |
+
sacrebleu
|
| 5 |
+
sacremoses
|
wiki_split.py
ADDED
|
@@ -0,0 +1,355 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
#
|
| 7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 8 |
+
#
|
| 9 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 12 |
+
# See the License for the specific language governing permissions and
|
| 13 |
+
# limitations under the License.
|
| 14 |
+
""" WIKI_SPLIT metric."""
|
| 15 |
+
|
| 16 |
+
import re
|
| 17 |
+
import string
|
| 18 |
+
from collections import Counter
|
| 19 |
+
|
| 20 |
+
import datasets
|
| 21 |
+
import sacrebleu
|
| 22 |
+
import sacremoses
|
| 23 |
+
from packaging import version
|
| 24 |
+
|
| 25 |
+
import evaluate
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
_CITATION = """
|
| 29 |
+
@inproceedings{xu-etal-2016-optimizing,
|
| 30 |
+
title = {Optimizing Statistical Machine Translation for Text Simplification},
|
| 31 |
+
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
|
| 32 |
+
journal = {Transactions of the Association for Computational Linguistics},
|
| 33 |
+
volume = {4},
|
| 34 |
+
year={2016},
|
| 35 |
+
url = {https://www.aclweb.org/anthology/Q16-1029},
|
| 36 |
+
pages = {401--415
|
| 37 |
+
},
|
| 38 |
+
@inproceedings{post-2018-call,
|
| 39 |
+
title = "A Call for Clarity in Reporting {BLEU} Scores",
|
| 40 |
+
author = "Post, Matt",
|
| 41 |
+
booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",
|
| 42 |
+
month = oct,
|
| 43 |
+
year = "2018",
|
| 44 |
+
address = "Belgium, Brussels",
|
| 45 |
+
publisher = "Association for Computational Linguistics",
|
| 46 |
+
url = "https://www.aclweb.org/anthology/W18-6319",
|
| 47 |
+
pages = "186--191",
|
| 48 |
+
}
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
_DESCRIPTION = """\
|
| 52 |
+
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
|
| 53 |
+
It can be used to evaluate the quality of machine-generated texts.
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
_KWARGS_DESCRIPTION = """
|
| 58 |
+
Calculates sari score (between 0 and 100) given a list of source and predicted
|
| 59 |
+
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
|
| 60 |
+
Args:
|
| 61 |
+
sources: list of source sentences where each sentence should be a string.
|
| 62 |
+
predictions: list of predicted sentences where each sentence should be a string.
|
| 63 |
+
references: list of lists of reference sentences where each sentence should be a string.
|
| 64 |
+
Returns:
|
| 65 |
+
sari: sari score
|
| 66 |
+
sacrebleu: sacrebleu score
|
| 67 |
+
exact: exact score
|
| 68 |
+
|
| 69 |
+
Examples:
|
| 70 |
+
>>> sources=["About 95 species are currently accepted ."]
|
| 71 |
+
>>> predictions=["About 95 you now get in ."]
|
| 72 |
+
>>> references=[["About 95 species are currently known ."]]
|
| 73 |
+
>>> wiki_split = evaluate.load("wiki_split")
|
| 74 |
+
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
|
| 75 |
+
>>> print(results)
|
| 76 |
+
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
|
| 77 |
+
"""
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def normalize_answer(s):
|
| 81 |
+
"""Lower text and remove punctuation, articles and extra whitespace."""
|
| 82 |
+
|
| 83 |
+
def remove_articles(text):
|
| 84 |
+
regex = re.compile(r"\b(a|an|the)\b", re.UNICODE)
|
| 85 |
+
return re.sub(regex, " ", text)
|
| 86 |
+
|
| 87 |
+
def white_space_fix(text):
|
| 88 |
+
return " ".join(text.split())
|
| 89 |
+
|
| 90 |
+
def remove_punc(text):
|
| 91 |
+
exclude = set(string.punctuation)
|
| 92 |
+
return "".join(ch for ch in text if ch not in exclude)
|
| 93 |
+
|
| 94 |
+
def lower(text):
|
| 95 |
+
return text.lower()
|
| 96 |
+
|
| 97 |
+
return white_space_fix(remove_articles(remove_punc(lower(s))))
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
def compute_exact(a_gold, a_pred):
|
| 101 |
+
return int(normalize_answer(a_gold) == normalize_answer(a_pred))
|
| 102 |
+
|
| 103 |
+
|
| 104 |
+
def compute_em(predictions, references):
|
| 105 |
+
scores = [any([compute_exact(ref, pred) for ref in refs]) for pred, refs in zip(predictions, references)]
|
| 106 |
+
return (sum(scores) / len(scores)) * 100
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def SARIngram(sgrams, cgrams, rgramslist, numref):
|
| 110 |
+
rgramsall = [rgram for rgrams in rgramslist for rgram in rgrams]
|
| 111 |
+
rgramcounter = Counter(rgramsall)
|
| 112 |
+
|
| 113 |
+
sgramcounter = Counter(sgrams)
|
| 114 |
+
sgramcounter_rep = Counter()
|
| 115 |
+
for sgram, scount in sgramcounter.items():
|
| 116 |
+
sgramcounter_rep[sgram] = scount * numref
|
| 117 |
+
|
| 118 |
+
cgramcounter = Counter(cgrams)
|
| 119 |
+
cgramcounter_rep = Counter()
|
| 120 |
+
for cgram, ccount in cgramcounter.items():
|
| 121 |
+
cgramcounter_rep[cgram] = ccount * numref
|
| 122 |
+
|
| 123 |
+
# KEEP
|
| 124 |
+
keepgramcounter_rep = sgramcounter_rep & cgramcounter_rep
|
| 125 |
+
keepgramcountergood_rep = keepgramcounter_rep & rgramcounter
|
| 126 |
+
keepgramcounterall_rep = sgramcounter_rep & rgramcounter
|
| 127 |
+
|
| 128 |
+
keeptmpscore1 = 0
|
| 129 |
+
keeptmpscore2 = 0
|
| 130 |
+
for keepgram in keepgramcountergood_rep:
|
| 131 |
+
keeptmpscore1 += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
|
| 132 |
+
# Fix an alleged bug [2] in the keep score computation.
|
| 133 |
+
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
|
| 134 |
+
keeptmpscore2 += keepgramcountergood_rep[keepgram]
|
| 135 |
+
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
|
| 136 |
+
# a target exactly.
|
| 137 |
+
keepscore_precision = 1
|
| 138 |
+
keepscore_recall = 1
|
| 139 |
+
if len(keepgramcounter_rep) > 0:
|
| 140 |
+
keepscore_precision = keeptmpscore1 / len(keepgramcounter_rep)
|
| 141 |
+
if len(keepgramcounterall_rep) > 0:
|
| 142 |
+
# Fix an alleged bug [2] in the keep score computation.
|
| 143 |
+
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
|
| 144 |
+
keepscore_recall = keeptmpscore2 / sum(keepgramcounterall_rep.values())
|
| 145 |
+
keepscore = 0
|
| 146 |
+
if keepscore_precision > 0 or keepscore_recall > 0:
|
| 147 |
+
keepscore = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
|
| 148 |
+
|
| 149 |
+
# DELETION
|
| 150 |
+
delgramcounter_rep = sgramcounter_rep - cgramcounter_rep
|
| 151 |
+
delgramcountergood_rep = delgramcounter_rep - rgramcounter
|
| 152 |
+
delgramcounterall_rep = sgramcounter_rep - rgramcounter
|
| 153 |
+
deltmpscore1 = 0
|
| 154 |
+
deltmpscore2 = 0
|
| 155 |
+
for delgram in delgramcountergood_rep:
|
| 156 |
+
deltmpscore1 += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
|
| 157 |
+
deltmpscore2 += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
|
| 158 |
+
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
|
| 159 |
+
# a target exactly.
|
| 160 |
+
delscore_precision = 1
|
| 161 |
+
if len(delgramcounter_rep) > 0:
|
| 162 |
+
delscore_precision = deltmpscore1 / len(delgramcounter_rep)
|
| 163 |
+
|
| 164 |
+
# ADDITION
|
| 165 |
+
addgramcounter = set(cgramcounter) - set(sgramcounter)
|
| 166 |
+
addgramcountergood = set(addgramcounter) & set(rgramcounter)
|
| 167 |
+
addgramcounterall = set(rgramcounter) - set(sgramcounter)
|
| 168 |
+
|
| 169 |
+
addtmpscore = 0
|
| 170 |
+
for addgram in addgramcountergood:
|
| 171 |
+
addtmpscore += 1
|
| 172 |
+
|
| 173 |
+
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
|
| 174 |
+
# a target exactly.
|
| 175 |
+
addscore_precision = 1
|
| 176 |
+
addscore_recall = 1
|
| 177 |
+
if len(addgramcounter) > 0:
|
| 178 |
+
addscore_precision = addtmpscore / len(addgramcounter)
|
| 179 |
+
if len(addgramcounterall) > 0:
|
| 180 |
+
addscore_recall = addtmpscore / len(addgramcounterall)
|
| 181 |
+
addscore = 0
|
| 182 |
+
if addscore_precision > 0 or addscore_recall > 0:
|
| 183 |
+
addscore = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
|
| 184 |
+
|
| 185 |
+
return (keepscore, delscore_precision, addscore)
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
def SARIsent(ssent, csent, rsents):
|
| 189 |
+
numref = len(rsents)
|
| 190 |
+
|
| 191 |
+
s1grams = ssent.split(" ")
|
| 192 |
+
c1grams = csent.split(" ")
|
| 193 |
+
s2grams = []
|
| 194 |
+
c2grams = []
|
| 195 |
+
s3grams = []
|
| 196 |
+
c3grams = []
|
| 197 |
+
s4grams = []
|
| 198 |
+
c4grams = []
|
| 199 |
+
|
| 200 |
+
r1gramslist = []
|
| 201 |
+
r2gramslist = []
|
| 202 |
+
r3gramslist = []
|
| 203 |
+
r4gramslist = []
|
| 204 |
+
for rsent in rsents:
|
| 205 |
+
r1grams = rsent.split(" ")
|
| 206 |
+
r2grams = []
|
| 207 |
+
r3grams = []
|
| 208 |
+
r4grams = []
|
| 209 |
+
r1gramslist.append(r1grams)
|
| 210 |
+
for i in range(0, len(r1grams) - 1):
|
| 211 |
+
if i < len(r1grams) - 1:
|
| 212 |
+
r2gram = r1grams[i] + " " + r1grams[i + 1]
|
| 213 |
+
r2grams.append(r2gram)
|
| 214 |
+
if i < len(r1grams) - 2:
|
| 215 |
+
r3gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2]
|
| 216 |
+
r3grams.append(r3gram)
|
| 217 |
+
if i < len(r1grams) - 3:
|
| 218 |
+
r4gram = r1grams[i] + " " + r1grams[i + 1] + " " + r1grams[i + 2] + " " + r1grams[i + 3]
|
| 219 |
+
r4grams.append(r4gram)
|
| 220 |
+
r2gramslist.append(r2grams)
|
| 221 |
+
r3gramslist.append(r3grams)
|
| 222 |
+
r4gramslist.append(r4grams)
|
| 223 |
+
|
| 224 |
+
for i in range(0, len(s1grams) - 1):
|
| 225 |
+
if i < len(s1grams) - 1:
|
| 226 |
+
s2gram = s1grams[i] + " " + s1grams[i + 1]
|
| 227 |
+
s2grams.append(s2gram)
|
| 228 |
+
if i < len(s1grams) - 2:
|
| 229 |
+
s3gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2]
|
| 230 |
+
s3grams.append(s3gram)
|
| 231 |
+
if i < len(s1grams) - 3:
|
| 232 |
+
s4gram = s1grams[i] + " " + s1grams[i + 1] + " " + s1grams[i + 2] + " " + s1grams[i + 3]
|
| 233 |
+
s4grams.append(s4gram)
|
| 234 |
+
|
| 235 |
+
for i in range(0, len(c1grams) - 1):
|
| 236 |
+
if i < len(c1grams) - 1:
|
| 237 |
+
c2gram = c1grams[i] + " " + c1grams[i + 1]
|
| 238 |
+
c2grams.append(c2gram)
|
| 239 |
+
if i < len(c1grams) - 2:
|
| 240 |
+
c3gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2]
|
| 241 |
+
c3grams.append(c3gram)
|
| 242 |
+
if i < len(c1grams) - 3:
|
| 243 |
+
c4gram = c1grams[i] + " " + c1grams[i + 1] + " " + c1grams[i + 2] + " " + c1grams[i + 3]
|
| 244 |
+
c4grams.append(c4gram)
|
| 245 |
+
|
| 246 |
+
(keep1score, del1score, add1score) = SARIngram(s1grams, c1grams, r1gramslist, numref)
|
| 247 |
+
(keep2score, del2score, add2score) = SARIngram(s2grams, c2grams, r2gramslist, numref)
|
| 248 |
+
(keep3score, del3score, add3score) = SARIngram(s3grams, c3grams, r3gramslist, numref)
|
| 249 |
+
(keep4score, del4score, add4score) = SARIngram(s4grams, c4grams, r4gramslist, numref)
|
| 250 |
+
avgkeepscore = sum([keep1score, keep2score, keep3score, keep4score]) / 4
|
| 251 |
+
avgdelscore = sum([del1score, del2score, del3score, del4score]) / 4
|
| 252 |
+
avgaddscore = sum([add1score, add2score, add3score, add4score]) / 4
|
| 253 |
+
finalscore = (avgkeepscore + avgdelscore + avgaddscore) / 3
|
| 254 |
+
return finalscore
|
| 255 |
+
|
| 256 |
+
|
| 257 |
+
def normalize(sentence, lowercase: bool = True, tokenizer: str = "13a", return_str: bool = True):
|
| 258 |
+
|
| 259 |
+
# Normalization is requried for the ASSET dataset (one of the primary
|
| 260 |
+
# datasets in sentence simplification) to allow using space
|
| 261 |
+
# to split the sentence. Even though Wiki-Auto and TURK datasets,
|
| 262 |
+
# do not require normalization, we do it for consistency.
|
| 263 |
+
# Code adapted from the EASSE library [1] written by the authors of the ASSET dataset.
|
| 264 |
+
# [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7
|
| 265 |
+
|
| 266 |
+
if lowercase:
|
| 267 |
+
sentence = sentence.lower()
|
| 268 |
+
|
| 269 |
+
if tokenizer in ["13a", "intl"]:
|
| 270 |
+
if version.parse(sacrebleu.__version__).major >= 2:
|
| 271 |
+
normalized_sent = sacrebleu.metrics.bleu._get_tokenizer(tokenizer)()(sentence)
|
| 272 |
+
else:
|
| 273 |
+
normalized_sent = sacrebleu.TOKENIZERS[tokenizer]()(sentence)
|
| 274 |
+
elif tokenizer == "moses":
|
| 275 |
+
normalized_sent = sacremoses.MosesTokenizer().tokenize(sentence, return_str=True, escape=False)
|
| 276 |
+
elif tokenizer == "penn":
|
| 277 |
+
normalized_sent = sacremoses.MosesTokenizer().penn_tokenize(sentence, return_str=True)
|
| 278 |
+
else:
|
| 279 |
+
normalized_sent = sentence
|
| 280 |
+
|
| 281 |
+
if not return_str:
|
| 282 |
+
normalized_sent = normalized_sent.split()
|
| 283 |
+
|
| 284 |
+
return normalized_sent
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def compute_sari(sources, predictions, references):
|
| 288 |
+
|
| 289 |
+
if not (len(sources) == len(predictions) == len(references)):
|
| 290 |
+
raise ValueError("Sources length must match predictions and references lengths.")
|
| 291 |
+
sari_score = 0
|
| 292 |
+
for src, pred, refs in zip(sources, predictions, references):
|
| 293 |
+
sari_score += SARIsent(normalize(src), normalize(pred), [normalize(sent) for sent in refs])
|
| 294 |
+
sari_score = sari_score / len(predictions)
|
| 295 |
+
return 100 * sari_score
|
| 296 |
+
|
| 297 |
+
|
| 298 |
+
def compute_sacrebleu(
|
| 299 |
+
predictions,
|
| 300 |
+
references,
|
| 301 |
+
smooth_method="exp",
|
| 302 |
+
smooth_value=None,
|
| 303 |
+
force=False,
|
| 304 |
+
lowercase=False,
|
| 305 |
+
use_effective_order=False,
|
| 306 |
+
):
|
| 307 |
+
references_per_prediction = len(references[0])
|
| 308 |
+
if any(len(refs) != references_per_prediction for refs in references):
|
| 309 |
+
raise ValueError("Sacrebleu requires the same number of references for each prediction")
|
| 310 |
+
transformed_references = [[refs[i] for refs in references] for i in range(references_per_prediction)]
|
| 311 |
+
output = sacrebleu.corpus_bleu(
|
| 312 |
+
predictions,
|
| 313 |
+
transformed_references,
|
| 314 |
+
smooth_method=smooth_method,
|
| 315 |
+
smooth_value=smooth_value,
|
| 316 |
+
force=force,
|
| 317 |
+
lowercase=lowercase,
|
| 318 |
+
use_effective_order=use_effective_order,
|
| 319 |
+
)
|
| 320 |
+
return output.score
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
| 324 |
+
class WikiSplit(evaluate.EvaluationModule):
|
| 325 |
+
def _info(self):
|
| 326 |
+
return evaluate.EvaluationModuleInfo(
|
| 327 |
+
description=_DESCRIPTION,
|
| 328 |
+
citation=_CITATION,
|
| 329 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
| 330 |
+
features=datasets.Features(
|
| 331 |
+
{
|
| 332 |
+
"predictions": datasets.Value("string", id="sequence"),
|
| 333 |
+
"references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"),
|
| 334 |
+
}
|
| 335 |
+
),
|
| 336 |
+
codebase_urls=[
|
| 337 |
+
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
|
| 338 |
+
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
|
| 339 |
+
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
|
| 340 |
+
"https://github.com/mjpost/sacreBLEU",
|
| 341 |
+
],
|
| 342 |
+
reference_urls=[
|
| 343 |
+
"https://www.aclweb.org/anthology/Q16-1029.pdf",
|
| 344 |
+
"https://github.com/mjpost/sacreBLEU",
|
| 345 |
+
"https://en.wikipedia.org/wiki/BLEU",
|
| 346 |
+
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
|
| 347 |
+
],
|
| 348 |
+
)
|
| 349 |
+
|
| 350 |
+
def _compute(self, sources, predictions, references):
|
| 351 |
+
result = {}
|
| 352 |
+
result.update({"sari": compute_sari(sources=sources, predictions=predictions, references=references)})
|
| 353 |
+
result.update({"sacrebleu": compute_sacrebleu(predictions=predictions, references=references)})
|
| 354 |
+
result.update({"exact": compute_em(predictions=predictions, references=references)})
|
| 355 |
+
return result
|