Spaces:
Sleeping
Sleeping
| from flask import Flask, request, jsonify | |
| from flask_cors import CORS | |
| from transformers import pipeline | |
| import os | |
| print("Loading End-to-End question generation model...") | |
| question_generator = pipeline("text2text-generation", model="valhalla/t5-base-e2e-qg") | |
| print("Model loaded successfully!") | |
| app = Flask(__name__) | |
| CORS(app) | |
| def generate_quiz(): | |
| data = request.get_json() | |
| if not data or 'context' not in data: | |
| return jsonify({'error': 'No context provided in the request.'}), 400 | |
| context = data['context'] | |
| print(f"Generating questions for the provided context...") | |
| generated_questions = [] | |
| try: | |
| output = question_generator( | |
| context, | |
| max_length=64, | |
| num_beams=5, | |
| num_return_sequences=5, | |
| early_stopping=True | |
| ) | |
| question_set = set() | |
| for item in output: | |
| question_str = item['generated_text'] | |
| questions = question_str.split('<sep>') | |
| for q in questions: | |
| clean_q = q.strip() | |
| if clean_q.endswith('?') and len(clean_q.split()) > 3: | |
| question_set.add(clean_q) | |
| generated_questions = [{'question': q, 'context': context} for q in question_set] | |
| generated_questions = generated_questions[:10] | |
| except Exception as e: | |
| print(f"Error generating questions: {e}") | |
| return jsonify({'error': 'Failed to generate quiz.'}), 500 | |
| print(f"Successfully generated {len(generated_questions)} unique questions.") | |
| return jsonify({'quiz': generated_questions}) | |
| if __name__ == '__main__': | |
| port = int(os.environ.get("PORT", 5000)) | |
| app.run(host='0.0.0.0', port=port) | |