Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -8,19 +8,20 @@ import torch
|
|
| 8 |
import nltk
|
| 9 |
import traceback
|
| 10 |
import docx2txt
|
| 11 |
-
import logging
|
| 12 |
from PIL import Image
|
| 13 |
from io import BytesIO
|
| 14 |
from tqdm import tqdm
|
| 15 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 16 |
from sentence_transformers import SentenceTransformer, util
|
| 17 |
-
from nltk.tokenize
|
| 18 |
|
| 19 |
-
#
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 25 |
MANUALS_DIR = "Manuals"
|
| 26 |
CHROMA_PATH = "chroma_store"
|
|
@@ -30,25 +31,18 @@ CHUNK_OVERLAP = 100
|
|
| 30 |
MAX_CONTEXT_CHUNKS = 3
|
| 31 |
MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
|
| 32 |
|
|
|
|
| 33 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 34 |
|
| 35 |
-
# ---------------- Sentence Tokenizer (Persistent) ----------------
|
| 36 |
-
try:
|
| 37 |
-
nltk.data.find("tokenizers/punkt")
|
| 38 |
-
except LookupError:
|
| 39 |
-
nltk.download("punkt")
|
| 40 |
-
|
| 41 |
-
tokenizer_punkt = PunktSentenceTokenizer()
|
| 42 |
-
|
| 43 |
# ---------------- Text Helpers ----------------
|
| 44 |
def clean(text):
|
| 45 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
| 46 |
|
| 47 |
def split_sentences(text):
|
| 48 |
try:
|
| 49 |
-
return
|
| 50 |
-
except
|
| 51 |
-
|
| 52 |
return text.split(". ")
|
| 53 |
|
| 54 |
def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
|
@@ -80,71 +74,86 @@ def extract_pdf_text(path):
|
|
| 80 |
text = pytesseract.image_to_string(img)
|
| 81 |
chunks.append((path, i + 1, clean(text)))
|
| 82 |
except Exception as e:
|
| 83 |
-
|
| 84 |
return chunks
|
| 85 |
|
| 86 |
def extract_docx_text(path):
|
| 87 |
try:
|
| 88 |
return [(path, 1, clean(docx2txt.process(path)))]
|
| 89 |
except Exception as e:
|
| 90 |
-
|
| 91 |
return []
|
| 92 |
|
| 93 |
# ---------------- Embedding ----------------
|
| 94 |
def embed_all():
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
try:
|
|
|
|
| 100 |
client.delete_collection(COLLECTION_NAME)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
|
| 105 |
docs, ids, metas = [], [], []
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
for
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
|
| 136 |
# ---------------- Model Setup ----------------
|
| 137 |
def load_model():
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 147 |
|
|
|
|
| 148 |
def ask_model(question, context, pipe, tokenizer):
|
| 149 |
prompt = f"""Use only the following context to answer. If uncertain, say \"I don't know.\"
|
| 150 |
|
|
@@ -157,37 +166,48 @@ A:"""
|
|
| 157 |
output = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
|
| 158 |
return output.split("A:")[-1].strip()
|
| 159 |
|
| 160 |
-
# ---------------- Query ----------------
|
| 161 |
def get_answer(question):
|
|
|
|
|
|
|
| 162 |
try:
|
| 163 |
-
query_emb = embedder.encode(question, convert_to_tensor=True)
|
| 164 |
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
|
| 165 |
context = "\n\n".join(results["documents"][0])
|
| 166 |
-
|
| 167 |
-
f"📄 Source: {m.get('source', 'N/A')} (Page {m.get('page', 'N/A')})" for m in results["metadatas"][0]
|
| 168 |
-
])
|
| 169 |
-
answer = ask_model(question, context, model_pipe, model_tokenizer)
|
| 170 |
-
return f"{answer}\n\n---\n{source_info}"
|
| 171 |
except Exception as e:
|
| 172 |
-
|
| 173 |
return f"Error: {e}"
|
| 174 |
|
| 175 |
# ---------------- UI ----------------
|
| 176 |
with gr.Blocks() as demo:
|
| 177 |
-
gr.Markdown("##
|
| 178 |
with gr.Row():
|
| 179 |
question = gr.Textbox(label="Ask your question")
|
| 180 |
ask = gr.Button("Ask")
|
| 181 |
-
answer = gr.Textbox(label="Answer", lines=
|
| 182 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
# Embed + Load Model at Startup
|
| 185 |
try:
|
| 186 |
db, embedder = embed_all()
|
| 187 |
-
model_pipe, model_tokenizer = load_model()
|
| 188 |
except Exception as e:
|
| 189 |
-
|
| 190 |
db, embedder = None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 191 |
model_pipe, model_tokenizer = None, None
|
| 192 |
|
| 193 |
if __name__ == "__main__":
|
|
|
|
| 8 |
import nltk
|
| 9 |
import traceback
|
| 10 |
import docx2txt
|
|
|
|
| 11 |
from PIL import Image
|
| 12 |
from io import BytesIO
|
| 13 |
from tqdm import tqdm
|
| 14 |
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 15 |
from sentence_transformers import SentenceTransformer, util
|
| 16 |
+
from nltk.tokenize import sent_tokenize
|
| 17 |
|
| 18 |
+
# Ensure punkt is downloaded
|
| 19 |
+
try:
|
| 20 |
+
nltk.data.find("tokenizers/punkt")
|
| 21 |
+
except LookupError:
|
| 22 |
+
nltk.download("punkt")
|
| 23 |
|
| 24 |
+
# Configuration
|
| 25 |
HF_TOKEN = os.getenv("HF_TOKEN")
|
| 26 |
MANUALS_DIR = "Manuals"
|
| 27 |
CHROMA_PATH = "chroma_store"
|
|
|
|
| 31 |
MAX_CONTEXT_CHUNKS = 3
|
| 32 |
MODEL_ID = "ibm-granite/granite-vision-3.2-2b"
|
| 33 |
|
| 34 |
+
# Device selection
|
| 35 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 36 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
# ---------------- Text Helpers ----------------
|
| 38 |
def clean(text):
|
| 39 |
return "\n".join([line.strip() for line in text.splitlines() if line.strip()])
|
| 40 |
|
| 41 |
def split_sentences(text):
|
| 42 |
try:
|
| 43 |
+
return sent_tokenize(text)
|
| 44 |
+
except:
|
| 45 |
+
print("\u26a0\ufe0f Tokenizer fallback: simple split.")
|
| 46 |
return text.split(". ")
|
| 47 |
|
| 48 |
def split_chunks(sentences, max_tokens=CHUNK_SIZE, overlap=CHUNK_OVERLAP):
|
|
|
|
| 74 |
text = pytesseract.image_to_string(img)
|
| 75 |
chunks.append((path, i + 1, clean(text)))
|
| 76 |
except Exception as e:
|
| 77 |
+
print("\u274c PDF read error:", path, e)
|
| 78 |
return chunks
|
| 79 |
|
| 80 |
def extract_docx_text(path):
|
| 81 |
try:
|
| 82 |
return [(path, 1, clean(docx2txt.process(path)))]
|
| 83 |
except Exception as e:
|
| 84 |
+
print("\u274c DOCX read error:", path, e)
|
| 85 |
return []
|
| 86 |
|
| 87 |
# ---------------- Embedding ----------------
|
| 88 |
def embed_all():
|
| 89 |
+
try:
|
| 90 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2")
|
| 91 |
+
embedder.eval()
|
| 92 |
+
except Exception as e:
|
| 93 |
+
print("\u274c Failed to load SentenceTransformer:", e)
|
| 94 |
+
return None, None
|
| 95 |
|
| 96 |
try:
|
| 97 |
+
client = chromadb.PersistentClient(path=CHROMA_PATH)
|
| 98 |
client.delete_collection(COLLECTION_NAME)
|
| 99 |
+
collection = client.get_or_create_collection(COLLECTION_NAME)
|
| 100 |
+
except Exception as e:
|
| 101 |
+
print("\u274c Failed to initialize ChromaDB:", e)
|
| 102 |
+
return None, None
|
| 103 |
|
| 104 |
docs, ids, metas = [], [], []
|
| 105 |
+
print("\ud83d\udcc4 Processing manuals...")
|
| 106 |
+
|
| 107 |
+
try:
|
| 108 |
+
for fname in os.listdir(MANUALS_DIR):
|
| 109 |
+
fpath = os.path.join(MANUALS_DIR, fname)
|
| 110 |
+
if fname.lower().endswith(".pdf"):
|
| 111 |
+
pages = extract_pdf_text(fpath)
|
| 112 |
+
elif fname.lower().endswith(".docx"):
|
| 113 |
+
pages = extract_docx_text(fpath)
|
| 114 |
+
else:
|
| 115 |
+
continue
|
| 116 |
+
|
| 117 |
+
for path, page, text in pages:
|
| 118 |
+
for i, chunk in enumerate(split_chunks(split_sentences(text))):
|
| 119 |
+
chunk_id = f"{fname}::{page}::{i}"
|
| 120 |
+
docs.append(chunk)
|
| 121 |
+
ids.append(chunk_id)
|
| 122 |
+
metas.append({"source": fname, "page": page})
|
| 123 |
+
|
| 124 |
+
if len(docs) >= 16:
|
| 125 |
+
embs = embedder.encode(docs).tolist()
|
| 126 |
+
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
|
| 127 |
+
docs, ids, metas = [], [], []
|
| 128 |
+
|
| 129 |
+
if docs:
|
| 130 |
+
embs = embedder.encode(docs).tolist()
|
| 131 |
+
collection.add(documents=docs, ids=ids, metadatas=metas, embeddings=embs)
|
| 132 |
+
|
| 133 |
+
print(f"\u2705 Embedded {len(ids)} chunks.")
|
| 134 |
+
return collection, embedder
|
| 135 |
+
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print("\u274c Error during embedding:", e)
|
| 138 |
+
return None, None
|
| 139 |
|
| 140 |
# ---------------- Model Setup ----------------
|
| 141 |
def load_model():
|
| 142 |
+
try:
|
| 143 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, token=HF_TOKEN)
|
| 144 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 145 |
+
MODEL_ID,
|
| 146 |
+
token=HF_TOKEN,
|
| 147 |
+
device_map="auto" if torch.cuda.is_available() else None,
|
| 148 |
+
torch_dtype=torch.bfloat16 if torch.cuda.is_available() else torch.float32
|
| 149 |
+
).to(device)
|
| 150 |
+
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
| 151 |
+
return pipe, tokenizer
|
| 152 |
+
except Exception as e:
|
| 153 |
+
print("\u274c Failed to load model:", e)
|
| 154 |
+
return None, None
|
| 155 |
|
| 156 |
+
# ---------------- QA Logic ----------------
|
| 157 |
def ask_model(question, context, pipe, tokenizer):
|
| 158 |
prompt = f"""Use only the following context to answer. If uncertain, say \"I don't know.\"
|
| 159 |
|
|
|
|
| 166 |
output = pipe(prompt, max_new_tokens=512)[0]["generated_text"]
|
| 167 |
return output.split("A:")[-1].strip()
|
| 168 |
|
|
|
|
| 169 |
def get_answer(question):
|
| 170 |
+
if not all([embedder, db, model_pipe, model_tokenizer]):
|
| 171 |
+
return "\u274c System not initialized. Check logs or try restarting the app."
|
| 172 |
try:
|
|
|
|
| 173 |
results = db.query(query_texts=[question], n_results=MAX_CONTEXT_CHUNKS)
|
| 174 |
context = "\n\n".join(results["documents"][0])
|
| 175 |
+
return ask_model(question, context, model_pipe, model_tokenizer)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
except Exception as e:
|
| 177 |
+
print("\u274c Query error:", e)
|
| 178 |
return f"Error: {e}"
|
| 179 |
|
| 180 |
# ---------------- UI ----------------
|
| 181 |
with gr.Blocks() as demo:
|
| 182 |
+
gr.Markdown("## \ud83e\udd16 SmartManuals-AI (Granite 3.2-2B)")
|
| 183 |
with gr.Row():
|
| 184 |
question = gr.Textbox(label="Ask your question")
|
| 185 |
ask = gr.Button("Ask")
|
| 186 |
+
answer = gr.Textbox(label="Answer", lines=8)
|
| 187 |
+
status = gr.Markdown(visible=False)
|
| 188 |
+
|
| 189 |
+
def wrapped_get_answer(q):
|
| 190 |
+
ans = get_answer(q)
|
| 191 |
+
return ans, "" # hide status after success
|
| 192 |
+
|
| 193 |
+
ask.click(fn=wrapped_get_answer, inputs=question, outputs=[answer, status])
|
| 194 |
+
|
| 195 |
+
# Show status on startup error
|
| 196 |
+
if not all([embedder, db, model_pipe, model_tokenizer]):
|
| 197 |
+
status.visible = True
|
| 198 |
+
status.value = "\u26a0\ufe0f Initialization failed. Check logs or your HF_TOKEN."
|
| 199 |
|
| 200 |
# Embed + Load Model at Startup
|
| 201 |
try:
|
| 202 |
db, embedder = embed_all()
|
|
|
|
| 203 |
except Exception as e:
|
| 204 |
+
print("\u274c Embedding failed:", e)
|
| 205 |
db, embedder = None, None
|
| 206 |
+
|
| 207 |
+
try:
|
| 208 |
+
model_pipe, model_tokenizer = load_model()
|
| 209 |
+
except Exception as e:
|
| 210 |
+
print("\u274c Model loading failed:", e)
|
| 211 |
model_pipe, model_tokenizer = None, None
|
| 212 |
|
| 213 |
if __name__ == "__main__":
|