Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import os | |
| import requests | |
| import json | |
| import utils | |
| from dotenv import load_dotenv, find_dotenv | |
| # List of ML models | |
| list_models = ["facebook/detr-resnet-50", "facebook/detr-resnet-101", "hustvl/yolos-tiny", "hustvl/yolos-small"] | |
| list_models_simple = [os.path.basename(model) for model in list_models] | |
| # ECS APIs | |
| AWS_DETR_URL = None | |
| AWS_YOLOS_URL = None | |
| # Initialize API URLs from env file or global settings | |
| def initialize_api_endpoints(): | |
| env_path = find_dotenv('config_api.env') | |
| if env_path: | |
| load_dotenv(dotenv_path=env_path) | |
| print("config_api.env file loaded successfully.") | |
| else: | |
| print("config_api.env file not found.") | |
| # Use of AWS ECS endpoint or local container by default | |
| global AWS_DETR_URL, AWS_YOLOS_URL | |
| AWS_DETR_URL = os.getenv("AWS_DETR_URL", default="http://0.0.0.0:8000") | |
| AWS_YOLOS_URL = os.getenv("AWS_YOLOS_URL", default="http://0.0.0.0:8001") | |
| # Retrieve correct endpoint based on model_type | |
| def retrieve_api_endpoint(model_type): | |
| if "detr" in model_type: | |
| API_URL = AWS_DETR_URL | |
| else: | |
| API_URL = AWS_YOLOS_URL | |
| return API_URL | |
| #@spaces.GPU | |
| def detect(image_path, model_id, threshold): | |
| print("\n Object detection...") | |
| print("\t ML model:", list_models[model_id]) | |
| with open(image_path, 'rb') as image_file: | |
| image_bytes = image_file.read() | |
| API_URL = retrieve_api_endpoint(list_models_simple[model_id]) | |
| # API Call for object prediction with model type as query parameter | |
| API_Endpoint = API_URL + "/api/v1/detect" + "?model=" + list_models_simple[model_id] | |
| print("\t API_Endpoint: ", API_Endpoint) | |
| response = requests.post(API_Endpoint, files={"image": image_bytes}) | |
| if response.status_code == 200: | |
| # Process the response | |
| response_string = response.json() | |
| response_dict = json.loads(response_string) | |
| print('\t API response', response_string) | |
| else: | |
| response_dict = {"Error": response.status_code} | |
| gr.Error(f"\t API Error: {response.status_code}") | |
| # Generate gradio output components: image and json | |
| output_json, output_pil_img = utils.generate_gradio_outputs(image_path, response_dict, threshold) | |
| return output_json, output_pil_img | |
| def demo(): | |
| initialize_api_endpoints() | |
| with gr.Blocks(theme="base") as demo: | |
| gr.Markdown("# Object detection task - use of ECS endpoints") | |
| gr.Markdown( | |
| """ | |
| This web application uses transformer models to detect objects on images. | |
| Machine learning models were trained on the COCO dataset. | |
| You can load an image and see the predictions for the objects detected. | |
| Note: This web application uses AWS ECS endpoints as a back-end APIs to run these ML models. | |
| """ | |
| ) | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_id = gr.Radio(list_models, \ | |
| label="Detection models", value=list_models[0], type="index", info="Choose your detection model") | |
| with gr.Column(): | |
| threshold = gr.Slider(0, 1.0, value=0.9, label='Detection threshold', info="Choose your detection threshold") | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image", type="filepath") | |
| output_image = gr.Image(label="Output image", type="pil") | |
| output_json = gr.JSON(label="JSON output", min_height=240, max_height=300) | |
| with gr.Row(): | |
| submit_btn = gr.Button("Submit") | |
| clear_button = gr.ClearButton() | |
| gr.Examples(['samples/savanna.jpg', 'samples/boats.jpg'], inputs=input_image) | |
| submit_btn.click(fn=detect, inputs=[input_image, model_id, threshold], outputs=[output_json, output_image]) | |
| clear_button.click(lambda: [None, None, None], \ | |
| inputs=None, \ | |
| outputs=[input_image, output_image, output_json], \ | |
| queue=False) | |
| demo.queue().launch(debug=True) | |
| if __name__ == "__main__": | |
| demo() |