Spaces:
Configuration error
Configuration error
| import gradio as gr | |
| import torch | |
| from torchvision import transforms | |
| from SDXL.diff_pipe import StableDiffusionXLDiffImg2ImgPipeline | |
| from diffusers import DPMSolverMultistepScheduler | |
| # DepthAnything | |
| import cv2 | |
| import numpy as np | |
| import os | |
| from PIL import Image | |
| import torch.nn.functional as F | |
| from torchvision.transforms import Compose | |
| import tempfile | |
| from gradio_imageslider import ImageSlider | |
| from depth_anything.depth_anything.dpt import DepthAnything | |
| from depth_anything.depth_anything.util.transform import Resize, NormalizeImage, PrepareForNet | |
| NUM_INFERENCE_STEPS = 50 | |
| dtype = torch.float16 | |
| if torch.cuda.is_available(): | |
| DEVICE = "cuda" | |
| elif torch.backends.mps.is_available(): | |
| DEVICE = "mps" | |
| dtype = torch.float32 | |
| else: | |
| DEVICE = "cpu" | |
| #device = "cuda" | |
| encoder = 'vitl' # can also be 'vitb' or 'vitl' | |
| model = DepthAnything.from_pretrained(f"LiheYoung/depth_anything_{encoder}14").to(DEVICE).eval() | |
| base = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=dtype, variant="fp16", use_safetensors=True | |
| ) | |
| refiner = StableDiffusionXLDiffImg2ImgPipeline.from_pretrained( | |
| "stabilityai/stable-diffusion-xl-refiner-1.0", | |
| text_encoder_2=base.text_encoder_2, | |
| vae=base.vae, | |
| torch_dtype=dtype, | |
| use_safetensors=True, | |
| variant="fp16", | |
| ) | |
| base.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config) | |
| refiner.scheduler = DPMSolverMultistepScheduler.from_config(base.scheduler.config) | |
| # DepthAnything | |
| transform = Compose([ | |
| Resize( | |
| width=518, | |
| height=518, | |
| resize_target=False, | |
| keep_aspect_ratio=True, | |
| ensure_multiple_of=14, | |
| resize_method='lower_bound', | |
| image_interpolation_method=cv2.INTER_CUBIC, | |
| ), | |
| NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), | |
| PrepareForNet(), | |
| ]) | |
| def predict_depth(model, image): | |
| return model(image) | |
| def depthify(image): | |
| original_image = image.copy() | |
| h, w = image.shape[:2] | |
| image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) / 255.0 | |
| image = transform({'image': image})['image'] | |
| image = torch.from_numpy(image).unsqueeze(0).to(DEVICE) | |
| depth = predict_depth(model, image) | |
| depth = F.interpolate(depth[None], (h, w), mode='bilinear', align_corners=False)[0, 0] | |
| raw_depth = Image.fromarray(depth.cpu().numpy().astype('uint8')) | |
| tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) | |
| raw_depth.save(tmp.name) | |
| depth = (depth - depth.min()) / (depth.max() - depth.min()) * 255.0 | |
| depth = depth.cpu().numpy().astype(np.uint8) | |
| colored_depth = cv2.applyColorMap(depth, cv2.COLORMAP_INFERNO)[:, :, ::-1] | |
| return [(original_image, colored_depth), tmp.name, raw_depth] | |
| # DifferentialDiffusion | |
| def preprocess_image(image_array): | |
| image = Image.fromarray(image_array) | |
| image = image.convert("RGB") | |
| image = transforms.CenterCrop((image.size[1] // 64 * 64, image.size[0] // 64 * 64))(image) | |
| image = transforms.ToTensor()(image) | |
| image = image * 2 - 1 | |
| image = image.unsqueeze(0).to(DEVICE) | |
| return image | |
| def preprocess_map(map): | |
| map = map.convert("L") | |
| map = transforms.CenterCrop((map.size[1] // 64 * 64, map.size[0] // 64 * 64))(map) | |
| # convert to tensor | |
| map = transforms.ToTensor()(map) | |
| map = map.to(DEVICE) | |
| return map | |
| def inference( | |
| image, | |
| map, | |
| guidance_scale, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| denoising_start, | |
| denoising_end | |
| ): | |
| validate_inputs(image, map) | |
| image = preprocess_image(image) | |
| map = preprocess_map(map) | |
| base_device = base.to(DEVICE) | |
| edited_images = base_device( | |
| prompt=prompt, | |
| original_image=image, | |
| image=image, | |
| strength=1, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| negative_prompt=negative_prompt, | |
| map=map, | |
| num_inference_steps=steps, | |
| denoising_end=denoising_end, | |
| output_type="latent" | |
| ).images | |
| base_device=None | |
| refiner_device = refiner.to(DEVICE) | |
| edited_images = refiner_device( | |
| prompt=prompt, | |
| original_image=image, | |
| image=edited_images, | |
| strength=1, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=1, | |
| negative_prompt=negative_prompt, | |
| map=map, | |
| num_inference_steps=steps, | |
| denoising_start=denoising_start | |
| ).images[0] | |
| refiner_device=None | |
| return edited_images | |
| def validate_inputs(image, map): | |
| if image is None: | |
| raise gr.Error("Missing image") | |
| if map is None: | |
| raise gr.Error("Missing map") | |
| def run(image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end): | |
| # first run | |
| [(original_image, colored_depth), name, raw_depth] = depthify(image) | |
| print(f"original_image={original_image} colored_depth={colored_depth}, name={name}, raw_depth={raw_depth}") | |
| return raw_depth, inference(original_image, raw_depth, gs, prompt, neg_prompt, steps, denoising_start, denoising_end) | |
| with gr.Blocks() as demo: | |
| with gr.Row(): | |
| with gr.Column(): | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input Image") | |
| # change_map = gr.Image(label="Change Map", type="pil") | |
| gs = gr.Slider(0, 28, value=7.5, label="Guidance Scale") | |
| steps = gr.Number(value=50, label="Steps") | |
| denoising_start = gr.Slider(0, 1, value=0.8, label="Denoising Start") | |
| denoising_end = gr.Slider(0, 1, value=0.8, label="Denoising End") | |
| prompt = gr.Textbox(label="Prompt") | |
| neg_prompt = gr.Textbox(label="Negative Prompt") | |
| with gr.Row(): | |
| # clr_btn=gr.ClearButton(components=[input_image, change_map, gs, prompt, neg_prompt]) | |
| clr_btn=gr.ClearButton(components=[input_image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end]) | |
| run_btn = gr.Button("Run",variant="primary") | |
| with gr.Column(): | |
| output = gr.Image(label="Output Image") | |
| change_map = gr.Image(label="Change Map") | |
| run_btn.click( | |
| run, | |
| #inference, | |
| inputs=[input_image, gs, prompt, neg_prompt, steps, denoising_start, denoising_end], | |
| outputs=[change_map, output] | |
| ) | |
| clr_btn.add(output) | |
| if __name__ == "__main__": | |
| demo.launch() | |