Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,69 +1,49 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
from pydantic import BaseModel, Field
|
| 4 |
from typing import Optional
|
|
|
|
| 5 |
|
| 6 |
-
# Define the schema
|
| 7 |
class Medication(BaseModel):
|
| 8 |
drug_name: str = Field(description="The name of the drug.")
|
| 9 |
-
is_generic: bool = Field(
|
| 10 |
-
description="Indicates if the drug name is a generic drug name (e.g. 'Tylenol' is not generic, 'paracetamol' or 'acetaminophen' is generic)."
|
| 11 |
-
)
|
| 12 |
strength: Optional[str] = Field(default=None, description="The strength of the drug.")
|
| 13 |
unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
|
| 14 |
dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
|
| 15 |
frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
|
| 16 |
route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
|
| 17 |
-
is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed'
|
| 18 |
total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")
|
| 19 |
|
| 20 |
-
#
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
#
|
| 24 |
-
|
| 25 |
|
| 26 |
-
# Response function
|
| 27 |
def respond(
|
| 28 |
message,
|
| 29 |
history: list[tuple[str, str]],
|
| 30 |
-
system_message,
|
| 31 |
-
max_tokens,
|
| 32 |
-
temperature,
|
| 33 |
-
top_p,
|
| 34 |
):
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
if assistant_msg:
|
| 41 |
-
messages.append({"role": "assistant", "content": assistant_msg})
|
| 42 |
-
|
| 43 |
-
messages.append({"role": "user", "content": message})
|
| 44 |
-
|
| 45 |
-
# Structured generation with schema
|
| 46 |
-
output = client.chat_completion(
|
| 47 |
-
messages=messages,
|
| 48 |
-
max_tokens=max_tokens,
|
| 49 |
-
temperature=temperature,
|
| 50 |
-
top_p=top_p,
|
| 51 |
-
stream=False,
|
| 52 |
-
response_format={"type": "json", "value": schema},
|
| 53 |
-
)
|
| 54 |
|
| 55 |
-
|
| 56 |
-
yield content
|
| 57 |
|
| 58 |
-
# Gradio
|
| 59 |
demo = gr.ChatInterface(
|
| 60 |
-
respond
|
| 61 |
-
additional_inputs=[
|
| 62 |
-
gr.Textbox(value="Extract structured medication details from this input.", label="System message"),
|
| 63 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 64 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 65 |
-
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
| 66 |
-
],
|
| 67 |
)
|
| 68 |
|
| 69 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from outlines.models.llamacpp import LlamaCpp
|
| 3 |
+
from outlines import generate, samplers
|
| 4 |
from pydantic import BaseModel, Field
|
| 5 |
from typing import Optional
|
| 6 |
+
import json
|
| 7 |
|
| 8 |
+
# Define the output schema
|
| 9 |
class Medication(BaseModel):
|
| 10 |
drug_name: str = Field(description="The name of the drug.")
|
| 11 |
+
is_generic: bool = Field(description="Indicates if the drug name is a generic drug name.")
|
|
|
|
|
|
|
| 12 |
strength: Optional[str] = Field(default=None, description="The strength of the drug.")
|
| 13 |
unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
|
| 14 |
dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
|
| 15 |
frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
|
| 16 |
route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
|
| 17 |
+
is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed'.")
|
| 18 |
total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")
|
| 19 |
|
| 20 |
+
# Load your model locally via llama-cpp
|
| 21 |
+
model = LlamaCpp(
|
| 22 |
+
model_path="/path/to/cmcmaster/drug_parsing_Llama-3.2-1B-Instruct-Q5_K_S-GGUF.gguf", # Change this path
|
| 23 |
+
temperature=0.0,
|
| 24 |
+
max_tokens=512
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
sampler = samplers.greedy()
|
| 28 |
|
| 29 |
+
# Prepare structured generator
|
| 30 |
+
structured_generator = generate.json(model, Medication, sampler = sampler)
|
| 31 |
|
|
|
|
| 32 |
def respond(
|
| 33 |
message,
|
| 34 |
history: list[tuple[str, str]],
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
):
|
| 36 |
+
try:
|
| 37 |
+
medication = structured_generator(message)
|
| 38 |
+
response = json.dumps(medication.model_dump(), indent=2)
|
| 39 |
+
except Exception as e:
|
| 40 |
+
response = f"Error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
+
yield response
|
|
|
|
| 43 |
|
| 44 |
+
# Gradio interface
|
| 45 |
demo = gr.ChatInterface(
|
| 46 |
+
respond
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
)
|
| 48 |
|
| 49 |
if __name__ == "__main__":
|