Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,12 +1,29 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
|
|
|
|
|
|
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
def respond(
|
| 11 |
message,
|
| 12 |
history: list[tuple[str, str]],
|
|
@@ -17,48 +34,37 @@ def respond(
|
|
| 17 |
):
|
| 18 |
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
for
|
| 21 |
-
if
|
| 22 |
-
messages.append({"role": "user", "content":
|
| 23 |
-
if
|
| 24 |
-
messages.append({"role": "assistant", "content":
|
| 25 |
|
| 26 |
messages.append({"role": "user", "content": message})
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
messages,
|
| 32 |
max_tokens=max_tokens,
|
| 33 |
-
stream=True,
|
| 34 |
temperature=temperature,
|
| 35 |
top_p=top_p,
|
| 36 |
-
|
| 37 |
-
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
-
|
| 43 |
-
"""
|
| 44 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 45 |
-
"""
|
| 46 |
demo = gr.ChatInterface(
|
| 47 |
respond,
|
| 48 |
additional_inputs=[
|
| 49 |
-
gr.Textbox(value="
|
| 50 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 51 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 52 |
-
gr.Slider(
|
| 53 |
-
minimum=0.1,
|
| 54 |
-
maximum=1.0,
|
| 55 |
-
value=0.95,
|
| 56 |
-
step=0.05,
|
| 57 |
-
label="Top-p (nucleus sampling)",
|
| 58 |
-
),
|
| 59 |
],
|
| 60 |
)
|
| 61 |
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
from pydantic import BaseModel, Field
|
| 4 |
+
from typing import Optional
|
| 5 |
|
| 6 |
+
# Define the schema
|
| 7 |
+
class Medication(BaseModel):
|
| 8 |
+
drug_name: str = Field(description="The name of the drug.")
|
| 9 |
+
is_generic: bool = Field(
|
| 10 |
+
description="Indicates if the drug name is a generic drug name (e.g. 'Tylenol' is not generic, 'paracetamol' or 'acetaminophen' is generic)."
|
| 11 |
+
)
|
| 12 |
+
strength: Optional[str] = Field(default=None, description="The strength of the drug.")
|
| 13 |
+
unit: Optional[str] = Field(default=None, description="The unit of measurement for the drug strength.")
|
| 14 |
+
dosage_form: Optional[str] = Field(default=None, description="The form of the drug (e.g., patch, tablet).")
|
| 15 |
+
frequency: Optional[str] = Field(default=None, description="The frequency of drug administration.")
|
| 16 |
+
route: Optional[str] = Field(default=None, description="The route of administration (e.g., oral, topical).")
|
| 17 |
+
is_prn: Optional[bool] = Field(default=None, description="Whether the medication is taken 'as needed' (pro re nata).")
|
| 18 |
+
total_daily_dose_mg: Optional[float] = Field(default=None, description="The total daily dose in milligrams.")
|
| 19 |
|
| 20 |
+
# Get the schema for structured generation
|
| 21 |
+
schema = Medication.schema()
|
| 22 |
|
| 23 |
+
# Connect to your model
|
| 24 |
+
client = InferenceClient("cmcmaster/drug_parsing_Llama-3.2-1B-Instruct")
|
| 25 |
+
|
| 26 |
+
# Response function
|
| 27 |
def respond(
|
| 28 |
message,
|
| 29 |
history: list[tuple[str, str]],
|
|
|
|
| 34 |
):
|
| 35 |
messages = [{"role": "system", "content": system_message}]
|
| 36 |
|
| 37 |
+
for user_msg, assistant_msg in history:
|
| 38 |
+
if user_msg:
|
| 39 |
+
messages.append({"role": "user", "content": user_msg})
|
| 40 |
+
if assistant_msg:
|
| 41 |
+
messages.append({"role": "assistant", "content": assistant_msg})
|
| 42 |
|
| 43 |
messages.append({"role": "user", "content": message})
|
| 44 |
|
| 45 |
+
# Structured generation with schema
|
| 46 |
+
output = client.chat_completion(
|
| 47 |
+
messages=messages,
|
|
|
|
| 48 |
max_tokens=max_tokens,
|
|
|
|
| 49 |
temperature=temperature,
|
| 50 |
top_p=top_p,
|
| 51 |
+
stream=False,
|
| 52 |
+
response_format={"type": "json", "value": schema},
|
| 53 |
+
)
|
| 54 |
|
| 55 |
+
content = output.choices[0].message.content
|
| 56 |
+
yield content
|
| 57 |
|
| 58 |
+
# Gradio app
|
|
|
|
|
|
|
|
|
|
| 59 |
demo = gr.ChatInterface(
|
| 60 |
respond,
|
| 61 |
additional_inputs=[
|
| 62 |
+
gr.Textbox(value="Extract structured medication details from this input.", label="System message"),
|
| 63 |
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 64 |
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 65 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
],
|
| 67 |
)
|
| 68 |
|
|
|
|
| 69 |
if __name__ == "__main__":
|
| 70 |
+
demo.launch()
|